Skip to content
Related Articles
Open in App
Not now

Related Articles

Exponential Squaring (Fast Modulo Multiplication)

Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 21 Mar, 2023
Improve Article
Save Article

Given two numbers base and exp, we need to compute baseexp under Modulo 10^9+7 Examples:

Input : base = 2, exp = 2
Output : 4

Input  : base = 5, exp = 100000
Output : 754573817

In competitions, for calculating large powers of a number we are given a modulus value(a large prime number) because as the values of x^y     is being calculated it can get very large so instead we have to calculate (x^y     %modulus value.) We can use the modulus in our naive way by using modulus on all the intermediate steps and take modulus at the end, but in competitions it will definitely show TLE. So, what we can do. The answer is we can try exponentiation by squaring which is a fast method for calculating exponentiation of a number. Here we will be discussing two most common/important methods:

  1. Basic Method(Binary Exponentiation)
  2. 2^k     -ary method.

Binary Exponentiation

As described in this article we will be using following formula to recursively calculate (x^y     %modulus value): {\displaystyle x^{n}={\begin{cases}x\,(x^{2})^{\frac {n-1}{2}},&{\mbox{if }}n{\mbox{ is odd}}\\(x^{2})^{\frac {n}{2}},&{\mbox{if }}n{\mbox{ is even}}.\end{cases}}}

C++




// C++ program to compute exponential
// value under modulo using binary
// exponentiation.
#include<iostream>
using namespace std;
 
#define N 1000000007 // prime modulo value
 
long int exponentiation(long int base,
                        long int exp)
{
    if (exp == 0)
        return 1;
 
    if (exp == 1)
        return base % N;
 
    long int t = exponentiation(base, exp / 2);
    t = (t * t) % N;
 
    // if exponent is even value
    if (exp % 2 == 0)
        return t;
 
    // if exponent is odd value
    else
        return ((base % N) * t) % N;
}
 
// Driver Code
int main()
{
    long int base = 5;
    long int exp = 100000;
 
    long int modulo = exponentiation(base, exp);
    cout << modulo << endl;
    return 0;
}
 
// This Code is contributed by mits


Java




// Java program to compute exponential value under modulo
// using binary exponentiation.
import java.util.*;
import java.lang.*;
import java.io.*;
 
class exp_sq {
    static long N = 1000000007L; // prime modulo value
    public static void main(String[] args)
    {
        long base = 5;
        long exp = 100000;
 
        long modulo = exponentiation(base, exp);
        System.out.println(modulo);
    }
 
    static long exponentiation(long base, long exp)
    {
        if (exp == 0)
            return 1;
 
        if (exp == 1)
            return base % N;
 
        long t = exponentiation(base, exp / 2);
        t = (t * t) % N;
 
        // if exponent is even value
        if (exp % 2 == 0)
            return t;
 
        // if exponent is odd value
        else
            return ((base % N) * t) % N;
    }
}


Python3




# Python3 program to compute
# exponential value under
# modulo using binary
# exponentiation.
 
# prime modulo value
N = 1000000007;
     
# Function code
def exponentiation(bas, exp):
    if (exp == 0):
        return 1;
    if (exp == 1):
        return bas % N;
     
    t = exponentiation(bas, int(exp / 2));
    t = (t * t) % N;
     
    # if exponent is
    # even value
    if (exp % 2 == 0):
        return t;
         
    # if exponent is
    # odd value
    else:
        return ((bas % N) * t) % N;
 
# Driver code
bas = 5;
exp = 100000;
 
modulo = exponentiation(bas, exp);
print(modulo);
 
# This code is contributed
# by mits


C#




// C# program to compute exponential
// value under modulo using binary
// exponentiation.
using System;
 
class GFG {
     
    // prime modulo value
    static long N = 1000000007L;
     
    // Driver code
    public static void Main()
    {
        long bas = 5;
        long exp = 100000;
 
        long modulo = exponentiation(bas, exp);
        Console.Write(modulo);
    }
 
    static long exponentiation(long bas, long exp)
    {
        if (exp == 0)
            return 1;
 
        if (exp == 1)
            return bas % N;
 
        long t = exponentiation(bas, exp / 2);
        t = (t * t) % N;
 
        // if exponent is even value
        if (exp % 2 == 0)
            return t;
 
        // if exponent is odd value
        else
            return ((bas % N) * t) % N;
    }
}
 
// This code is contributed by nitin mittal.


PHP




<?php
// PHP program to compute exponential
// value under modulo using binary
// exponentiation.
 
// prime modulo value
$N = 1000000007;
     
// Function code
function exponentiation($bas, $exp)
{
    global $N ;
    if ($exp == 0)
        return 1;
 
    if ($exp == 1)
        return $bas % $N;
 
    $t = exponentiation($bas,
                        $exp / 2);
    $t = ($t * $t) % $N;
 
    // if exponent is
    // even value
    if ($exp % 2 == 0)
        return $t;
 
    // if exponent is
    // odd value
    else
        return (($bas % $N) *
                 $t) % $N;
}
 
// Driver code
$bas = 5;
$exp = 100000;
 
$modulo = exponentiation($bas, $exp);
echo ($modulo);
 
// This code is contributed by ajit
?>


Javascript




<script>
// JavaScript program to compute
// exponential value under
// modulo using binary
// exponentiation.
 
// prime modulo value
let N = 1000000007;
 
// Function code
function exponentiation(base, exp){
 
    if (exp == 0){
        return 1;
    }
         
    if (exp == 1){
        return (base % N);
    }
 
    let t = exponentiation(base,exp/2);
    t = ((t * t) % N);
    console.log(t);
     
    // if exponent is
    // even value
    if (exp % 2 == 0){
        return t;
    }
     
    // if exponent is
    // odd value
    else{
        return ((base % N) * t) % N;
    }      
}
 
 
// Driver code
let base = 5;
let exp = 100000;
 
let modulo = exponentiation(base, exp);
document.write(modulo);
document.write(base);
 
// This code is contributed by Gautam goel (gautamgoel962)
</script>


Output :

754573817

Time Complexity: O(log exp) since the binary exponentiation algorithm divides the exponent by 2 at each recursive call, resulting in a logarithmic number of recursive calls.

Space Complexity: O(log exp)

    -ary method:

In this algorithm we will be expanding the exponent in base 2^k     (k>=1), which is somehow similar to above method except we are not using recursion this method uses comparatively less memory and time. 

C++




// C++ program to compute exponential value using (2^k)
// -ary method.
#include<bits/stdc++.h>
using namespace std;
 
#define N 1000000007L; // prime modulo value
 
long exponentiation(long base, long exp)
{
    long t = 1L;
    while (exp > 0)
    {
 
        // for cases where exponent
        // is not an even value
        if (exp % 2 != 0)
            t = (t * base) % N;
 
        base = (base * base) % N;
        exp /= 2;
    }
    return t % N;
}
 
// Driver code
int main()
{
    long base = 5;
    long exp = 100000;
 
    long modulo = exponentiation(base, exp);
    cout << (modulo);
    return 0;
}
 
// This code is contributed by Rajput-Ji


Java




// Java program to compute exponential value using (2^k)
// -ary method.
import java.util.*;
import java.lang.*;
import java.io.*;
 
class exp_sq {
    static long N = 1000000007L; // prime modulo value
    public static void main(String[] args)
    {
        long base = 5;
        long exp = 100000;
 
        long modulo = exponentiation(base, exp);
        System.out.println(modulo);
    }
 
    static long exponentiation(long base, long exp)
    {
        long t = 1L;
        while (exp > 0) {
 
            // for cases where exponent
            // is not an even value
            if (exp % 2 != 0)
                t = (t * base) % N;
 
            base = (base * base) % N;
            exp /= 2;
        }
        return t % N;
    }
}


Python3




# Python3 program to compute
# exponential value
# using (2^k) -ary method.
 
# prime modulo value
N = 1000000007;
 
def exponentiation(bas, exp):
    t = 1;
    while(exp > 0):
 
        # for cases where exponent
        # is not an even value
        if (exp % 2 != 0):
            t = (t * bas) % N;
 
        bas = (bas * bas) % N;
        exp = int(exp / 2);
    return t % N;
 
# Driver Code
bas = 5;
exp = 100000;
 
modulo = exponentiation(bas,exp);
print(modulo);
 
# This code is contributed
# by mits


C#




// C# program to compute
// exponential value
// using (2^k) -ary method.
using System;
 
class GFG
{
// prime modulo value
static long N = 1000000007L;
 
static long exponentiation(long bas,
                           long exp)
{
    long t = 1L;
    while (exp > 0)
    {
 
        // for cases where exponent
        // is not an even value
        if (exp % 2 != 0)
            t = (t * bas) % N;
 
        bas = (bas * bas) % N;
        exp /= 2;
    }
    return t % N;
}
 
// Driver Code   
public static void Main ()
{
    long bas = 5;
    long exp = 100000;
 
    long modulo = exponentiation(bas,
                                 exp);
    Console.WriteLine(modulo);
}
}
 
//This code is contributed by ajit


PHP




<?php
// PHP program to compute
// exponential value
// using (2^k) -ary method.
 
// prime modulo value
$N = 1000000007;
 
function exponentiation($bas,
                        $exp)
{
    global $N;
    $t = 1;
    while ($exp > 0)
    {
 
        // for cases where exponent
        // is not an even value
        if ($exp % 2 != 0)
            $t = ($t * $bas) % $N;
 
        $bas = ($bas * $bas) % $N;
        $exp = (int)$exp / 2;
    }
    return $t % $N;
}
 
// Driver Code
$bas = 5;
$exp = 100000;
 
$modulo = exponentiation($bas,
                         $exp);
echo ($modulo);
 
// This code is contributed
// by ajit
?>


Javascript




// JavaScript program to compute
// exponential value
// using (2^k) -ary method.
 
// prime modulo value
let N = 1000000007n;
 
function exponentiation(bas, exp)
{
    let t = 1n;
    while(exp > 0n)
    {
        // for cases where exponent
        // is not an even value
        if (exp % 2n != 0n)
            t = (t * bas) % N;
         
         
        bas = (bas * bas) % N;
        exp >>= 1n;
    }
    return t % N;
}
 
 
// Driver Code
let bas = 5n;
let exp = 100000n;
 
let modulo = exponentiation(bas,exp);
console.log(Number(modulo));
 
 
// This code is contributed
// by phasing17


Output :

754573817

Time Complexity: O(log exp)

Space Complexity: O(1)

Applications: Besides fast calculation of x^y     this method have several other advantages, like it is used in cryptography, in calculating Matrix Exponentiation et cetera.


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!