Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Euclidean algorithms (Basic and Extended)

  • Difficulty Level : Medium
  • Last Updated : 08 Oct, 2021

GCD of two numbers is the largest number that divides both of them. A simple way to find GCD is to factorize both numbers and multiply common prime factors.
 

GCD

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Basic Euclidean Algorithm for GCD 
The algorithm is based on the below facts. 



  • If we subtract a smaller number from a larger (we reduce a larger number), GCD doesn’t change. So if we keep subtracting repeatedly the larger of two, we end up with GCD.
  • Now instead of subtraction, if we divide the smaller number, the algorithm stops when we find remainder 0.

Below is a recursive function to evaluate gcd using Euclid’s algorithm. 

CPP




// C++ program to demonstrate
// Basic Euclidean Algorithm
#include <bits/stdc++.h>
using namespace std;
  
// Function to return 
// gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
  
// Driver Code
int main()
{
    int a = 10, b = 15;
    cout << "GCD(" << a << ", " 
         << b << ") = " << gcd(a, b) 
                        << endl;
    a = 35, b = 10;
    cout << "GCD(" << a << ", " 
         << b << ") = " << gcd(a, b) 
                        << endl;
    a = 31, b = 2;
    cout << "GCD(" << a << ", " 
         << b << ") = " << gcd(a, b) 
                        << endl;
    return 0;
}
  
// This code is contributed 
// by Nimit Garg


C




// C program to demonstrate Basic Euclidean Algorithm
#include <stdio.h>
  
// Function to return gcd of a and b
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b%a, a);
}
  
// Driver program to test above function
int main()
{
    int a = 10, b = 15;
    printf("GCD(%d, %d) = %dn", a, b, gcd(a, b));
    a = 35, b = 10;
    printf("GCD(%d, %d) = %dn", a, b, gcd(a, b));
    a = 31, b = 2;
    printf("GCD(%d, %d) = %dn", a, b, gcd(a, b));
    return 0;
}


Java




// Java program to demonstrate working of extended
// Euclidean Algorithm
  
import java.util.*;
import java.lang.*;
  
class GFG
{
    // extended Euclidean Algorithm
    public static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
          
        return gcd(b%a, a);
    }
  
// Driver Program
    public static void main(String[] args)
    {
        int a = 10, b = 15, g;
        g = gcd(a, b);
        System.out.println("GCD(" + a +  " , " + b+ ") = " + g);
          
        a = 35; b = 10;
        g = gcd(a, b);
        System.out.println("GCD(" + a +  " , " + b+ ") = " + g);
          
        a = 31; b = 2;
        g = gcd(a, b);
        System.out.println("GCD(" + a +  " , " + b+ ") = " + g);
  
    }
}
// Code Contributed by Mohit Gupta_OMG <(0_o)>


Python3




# Python program to demonstrate Basic Euclidean Algorithm
  
  
# Function to return gcd of a and b
def gcd(a, b): 
    if a == 0 :
        return
      
    return gcd(b%a, a)
  
a = 10
b = 15
print("gcd(", a , "," , b, ") = ", gcd(a, b))
  
a = 35
b = 10
print("gcd(", a , "," , b, ") = ", gcd(a, b))
  
a = 31
b = 2
print("gcd(", a , "," , b, ") = ", gcd(a, b))
  
# Code Contributed By Mohit Gupta_OMG <(0_o)>


C#




using System;
  
class GFG
{
    public static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
          
        return gcd(b % a, a);
    }
      
    // Driver Code
    static public void Main ()
    {
        int a = 10, b = 15, g;
        g = gcd(a, b);
        Console.WriteLine("GCD(" + a + 
              " , " + b + ") = " + g);
          
        a = 35; b = 10;
        g = gcd(a, b);
        Console.WriteLine("GCD(" + a + 
              " , " + b + ") = " + g);
          
        a = 31; b = 2;
        g = gcd(a, b);
        Console.WriteLine("GCD(" + a + 
              " , " + b + ") = " + g);
    }
}
  
// This code is contributed by ajit


PHP




<?php
// PHP program to demonstrate
// Basic Euclidean Algorithm
  
// Function to return
// gcd of a and b
function gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return gcd($b % $a, $a);
}
  
// Driver Code
$a = 10; $b = 15;
echo "GCD(",$a,"," , $b,") = "
                   gcd($a, $b);
echo "\n";
$a = 35; $b = 10;
echo "GCD(",$a ,",",$b,") = "
                  gcd($a, $b);
echo "\n";
$a = 31; $b = 2;
echo "GCD(",$a ,",", $b,") = "
                   gcd($a, $b);
  
// This code is contributed by m_kit
?>


Javascript




<script>
  
// JavaScript program to demonstrate
// Basic Euclidean Algorithm
  
// Function to return 
// gcd of a and b
function gcd( a,  b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
  
// Driver Code
  
    let a = 10, b = 15;
   document.write( "GCD(" + a + ", " 
         + b + ") = " + gcd(a, b) +"<br/>");
           
    a = 35, b = 10;
   document.write( "GCD(" + a + ", " 
         + b + ") = " + gcd(a, b) +"<br/>");
           
    a = 31, b = 2;
    document.write( "GCD(" + a + ", " 
         + b + ") = " + gcd(a, b) +"<br/>");
  
// This code contributed by aashish1995 
  
</script>


Output : 

GCD(10, 15) = 5
GCD(35, 10) = 5
GCD(31, 2) = 1

Time Complexity: O(Log min(a, b))  
Extended Euclidean Algorithm: 
Extended Euclidean algorithm also finds integer coefficients x and y such that: 

  ax + by = gcd(a, b) 

Examples:  

Input: a = 30, b = 20
Output: gcd = 10
        x = 1, y = -1
(Note that 30*1 + 20*(-1) = 10)

Input: a = 35, b = 15
Output: gcd = 5
        x = 1, y = -2
(Note that 35*1 + 15*(-2) = 5)

The extended Euclidean algorithm updates results of gcd(a, b) using the results calculated by recursive call gcd(b%a, a). Let values of x and y calculated by the recursive call be x1 and y1. x and y are updated using the below expressions. 

x = y1 - ⌊b/a⌋ * x1
y = x1

Below is an implementation based on the above formulas. 

C++




// C++ program to demonstrate working of 
// extended Euclidean Algorithm 
#include <bits/stdc++.h> 
using namespace std;
  
// Function for extended Euclidean Algorithm 
int gcdExtended(int a, int b, int *x, int *y) 
    // Base Case 
    if (a == 0) 
    
        *x = 0; 
        *y = 1; 
        return b; 
    
  
    int x1, y1; // To store results of recursive call 
    int gcd = gcdExtended(b%a, a, &x1, &y1); 
  
    // Update x and y using results of 
    // recursive call 
    *x = y1 - (b/a) * x1; 
    *y = x1; 
  
    return gcd; 
  
// Driver Code
int main() 
    int x, y, a = 35, b = 15; 
    int g = gcdExtended(a, b, &x, &y); 
    cout << "GCD(" << a << ", " << b 
         << ") = " << g << endl;
    return 0; 
  
// This code is contributed by TusharSabhani


C




// C program to demonstrate working of extended
// Euclidean Algorithm
#include <stdio.h>
  
// C function for extended Euclidean Algorithm
int gcdExtended(int a, int b, int *x, int *y)
{
    // Base Case
    if (a == 0)
    {
        *x = 0;
        *y = 1;
        return b;
    }
  
    int x1, y1; // To store results of recursive call
    int gcd = gcdExtended(b%a, a, &x1, &y1);
  
    // Update x and y using results of recursive
    // call
    *x = y1 - (b/a) * x1;
    *y = x1;
  
    return gcd;
}
  
// Driver Program
int main()
{
    int x, y;
    int a = 35, b = 15;
    int g = gcdExtended(a, b, &x, &y);
    printf("gcd(%d, %d) = %d", a, b, g);
    return 0;
}


Java




// Java program to demonstrate working of extended
// Euclidean Algorithm
  
import java.util.*;
import java.lang.*;
  
class GFG
{
    // extended Euclidean Algorithm
    public static int gcdExtended(int a, int b, int x, int y)
    {
        // Base Case
        if (a == 0)
        {
            x = 0;
            y = 1;
            return b;
        }
  
        int x1=1, y1=1; // To store results of recursive call
        int gcd = gcdExtended(b%a, a, x1, y1);
  
        // Update x and y using results of recursive
        // call
        x = y1 - (b/a) * x1;
        y = x1;
  
        return gcd;
    }
  
// Driver Program
    public static void main(String[] args)
    {
        int x=1, y=1;
        int a = 35, b = 15;
        int g = gcdExtended(a, b, x, y);
        System.out.print("gcd(" + a +  " , " + b+ ") = " + g);
  
    }
}
// Code Contributed by Mohit Gupta_OMG <(0-o)>


Python3




# Python program to demonstrate working of extended 
# Euclidean Algorithm 
     
# function for extended Euclidean Algorithm 
def gcdExtended(a, b): 
  
    # Base Case 
    if a == 0 :  
        return b, 0, 1
             
    gcd, x1, y1 = gcdExtended(b%a, a) 
     
    # Update x and y using results of recursive 
    # call 
    x = y1 - (b//a) * x1 
    y = x1 
     
    return gcd, x, y
      
  
# Driver code
a, b = 35,15
g, x, y = gcdExtended(a, b) 
print("gcd(", a , "," , b, ") = ", g) 


C#




// C# program to demonstrate working 
// of extended Euclidean Algorithm
using System;
  
class GFG
{
      
    // extended Euclidean Algorithm
    public static int gcdExtended(int a, int b, 
                                  int x, int y)
    {
        // Base Case
        if (a == 0)
        {
            x = 0;
            y = 1;
            return b;
        }
  
        // To store results of
        // recursive call
        int x1 = 1, y1 = 1; 
        int gcd = gcdExtended(b % a, a, x1, y1);
  
        // Update x and y using 
        // results of recursive call
        x = y1 - (b / a) * x1;
        y = x1;
  
        return gcd;
    }
      
    // Driver Code
    static public void Main ()
    {
        int x = 1, y = 1;
        int a = 35, b = 15;
        int g = gcdExtended(a, b, x, y);
        Console.WriteLine("gcd(" + a + " , "
                              b + ") = " + g);
    }
}
  
// This code is contributed by m_kit


PHP




<?php
// PHP program to demonstrate 
// working of extended 
// Euclidean Algorithm
  
// PHP function for 
// extended Euclidean 
// Algorithm
function gcdExtended($a, $b,    
                     $x, $y)
{
    // Base Case
    if ($a == 0)
    {
        $x = 0;
        $y = 1;
        return $b;
    }
  
    // To store results 
    // of recursive call
    $gcd = gcdExtended($b % $a
                       $a, $x, $y);
  
    // Update x and y using
    // results of recursive
    // call
    $x = $y - floor($b / $a) * $x;
    $y = $x;
  
    return $gcd;
}
  
// Driver Code
$x = 0;
$y = 0;
$a = 35; $b = 15;
$g = gcdExtended($a, $b, $x, $y);
echo "gcd(",$a;
echo ", " , $b, ")";
echo " = " , $g;
  
// This code is contributed by ajit
?>


Javascript




<script>
  
// Javascript program to demonstrate 
// working of extended 
// Euclidean Algorithm
  
// Javascript function for 
// extended Euclidean 
// Algorithm
function gcdExtended(a, b,    
                     x, y)
{
    // Base Case
    if (a == 0)
    {
        x = 0;
        y = 1;
        return b;
    }
  
    // To store results 
    // of recursive call
    let gcd = gcdExtended(b % a, 
                       a, x, y);
  
    // Update x and y using
    // results of recursive
    // call
    x = y - (b / a) * x;
    y = x;
  
    return gcd;
}
  
// Driver Code
let x = 0;
let y = 0;
let a = 35; 
let b = 15;
let g = gcdExtended(a, b, x, y);
document.write("gcd(" + a);
document.write(", " + b + ")");
document.write(" = " + g);
  
// This code is contributed by _saurabh_jaiswal
  
</script>


Output : 

gcd(35, 15) = 5

How does Extended Algorithm Work? 

As seen above, x and y are results for inputs a and b,
   a.x + b.y = gcd                      ----(1)  

And x1 and y1 are results for inputs b%a and a
   (b%a).x1 + a.y1 = gcd   
                    
When we put b%a = (b - (⌊b/a⌋).a) in above, 
we get following. Note that ⌊b/a⌋ is floor(b/a)

   (b - (⌊b/a⌋).a).x1 + a.y1  = gcd

Above equation can also be written as below
   b.x1 + a.(y1 - (⌊b/a⌋).x1) = gcd      ---(2)

After comparing coefficients of 'a' and 'b' in (1) and 
(2), we get following
   x = y1 - ⌊b/a⌋ * x1
   y = x1

How is Extended Algorithm Useful? 
The extended Euclidean algorithm is particularly useful when a and b are coprime (or gcd is 1). Since x is the modular multiplicative inverse of “a modulo b”, and y is the modular multiplicative inverse of “b modulo a”. In particular, the computation of the modular multiplicative inverse is an essential step in RSA public-key encryption method.
References: 
http://e-maxx.ru/algo/extended_euclid_algorithm 
http://en.wikipedia.org/wiki/Euclidean_algorithm 
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
This article is contributed by Ankur. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!