Elements to be added so that all elements of a range are present in array
Given an array of size N. Let A and B be the minimum and maximum in the array respectively. Task is to find how many number should be added to the given array such that all the element in the range [A, B] occur at-least once in the array.
Examples:
Input : arr[] = {4, 5, 3, 8, 6} Output : 1 Only 7 to be added in the list. Input : arr[] = {2, 1, 3} Output : 0
Method 1 (Sorting):
- Sort the array.
- Compare arr[i] == arr[i+1]-1 or not. If not, update count = arr[i+1]-arr[i]-1.
- Return count.
Implementation:
C++
// C++ program for above implementation #include <bits/stdc++.h> using namespace std; // Function to count numbers to be added int countNum( int arr[], int n) { int count = 0; // Sort the array sort(arr, arr + n); // Check if elements are consecutive // or not. If not, update count for ( int i = 0; i < n - 1; i++) if (arr[i] != arr[i+1] && arr[i] != arr[i + 1] - 1) count += arr[i + 1] - arr[i] - 1; return count; } // Drivers code int main() { int arr[] = { 3, 5, 8, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countNum(arr, n) << endl; return 0; } |
Java
// java program for above implementation import java.io.*; import java.util.*; public class GFG { // Function to count numbers to be added static int countNum( int []arr, int n) { int count = 0 ; // Sort the array Arrays.sort(arr); // Check if elements are consecutive // or not. If not, update count for ( int i = 0 ; i < n - 1 ; i++) if (arr[i] != arr[i+ 1 ] && arr[i] != arr[i + 1 ] - 1 ) count += arr[i + 1 ] - arr[i] - 1 ; return count; } // Drivers code static public void main (String[] args) { int []arr = { 3 , 5 , 8 , 6 }; int n = arr.length; System.out.println(countNum(arr, n)); } } // This code is contributed by vt_m. |
Python3
# python program for above implementation # Function to count numbers to be added def countNum(arr, n): count = 0 # Sort the array arr.sort() # Check if elements are consecutive # or not. If not, update count for i in range ( 0 , n - 1 ): if (arr[i] ! = arr[i + 1 ] and arr[i] ! = arr[i + 1 ] - 1 ): count + = arr[i + 1 ] - arr[i] - 1 ; return count # Drivers code arr = [ 3 , 5 , 8 , 6 ] n = len (arr) print (countNum(arr, n)) # This code is contributed by Sam007 |
C#
// C# program for above implementation using System; public class GFG { // Function to count numbers to be added static int countNum( int []arr, int n) { int count = 0; // Sort the array Array.Sort(arr); // Check if elements are consecutive // or not. If not, update count for ( int i = 0; i < n - 1; i++) if (arr[i] != arr[i+1] && arr[i] != arr[i + 1] - 1) count += arr[i + 1] - arr[i] - 1; return count; } // Drivers code static public void Main () { int []arr = { 3, 5, 8, 6 }; int n = arr.Length; Console.WriteLine(countNum(arr, n)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program for // above implementation // Function to count // numbers to be added function countNum( $arr , $n ) { $count = 0; // Sort the array sort( $arr ); // Check if elements are // consecutive or not. // If not, update count for ( $i = 0; $i < $n - 1; $i ++) if ( $arr [ $i ] != $arr [ $i + 1] && $arr [ $i ] != $arr [ $i + 1] - 1) $count += $arr [ $i + 1] - $arr [ $i ] - 1; return $count ; } // Driver code $arr = array (3, 5, 8, 6); $n = count ( $arr ); echo countNum( $arr , $n ) ; // This code is contributed // by anuj_67. ?> |
Javascript
<script> // Javascript program for above implementation // Function to count numbers to be added function countNum(arr, n) { let count = 0; // Sort the array arr.sort(); // Check if elements are consecutive // or not. If not, update count for (let i = 0; i < n - 1; i++) if (arr[i] != arr[i+1] && arr[i] != arr[i + 1] - 1) count += arr[i + 1] - arr[i] - 1; return count; } // Driver code let arr = [ 3, 5, 8, 6 ]; let n = arr.length; document.write(countNum(arr, n)); // This code is contributed by sanjoy_62. </script> |
2
Time Complexity: O(n log n)
Auxiliary Space: O(1)
Method 2 (Use Hashing):
- Maintain a hash of array elements.
- Store minimum and maximum element.
- Traverse from minimum to maximum element in hash
And count if element is not in hash. - Return count.
Implementation:
C++
// C++ program for above implementation #include <bits/stdc++.h> using namespace std; // Function to count numbers to be added int countNum( int arr[], int n) { unordered_set< int > s; int count = 0, maxm = INT_MIN, minm = INT_MAX; // Make a hash of elements // and store minimum and maximum element for ( int i = 0; i < n; i++) { s.insert(arr[i]); if (arr[i] < minm) minm = arr[i]; if (arr[i] > maxm) maxm = arr[i]; } // Traverse all elements from minimum // to maximum and count if it is not // in the hash for ( int i = minm; i <= maxm; i++) if (s.find(arr[i]) == s.end()) count++; return count; } // Drivers code int main() { int arr[] = { 3, 5, 8, 6 }; int n = sizeof (arr) / sizeof (arr[0]); cout << countNum(arr, n) << endl; return 0; } |
Java
// Java implementation of the approach import java.util.HashSet; class GFG { // Function to count numbers to be added static int countNum( int arr[], int n) { HashSet<Integer> s = new HashSet<>(); int count = 0 , maxm = Integer.MIN_VALUE, minm = Integer.MAX_VALUE; // Make a hash of elements // and store minimum and maximum element for ( int i = 0 ; i < n; i++) { s.add(arr[i]); if (arr[i] < minm) minm = arr[i]; if (arr[i] > maxm) maxm = arr[i]; } // Traverse all elements from minimum // to maximum and count if it is not // in the hash for ( int i = minm; i <= maxm; i++) if (!s.contains(i)) count++; return count; } // Drivers code public static void main(String[] args) { int arr[] = { 3 , 5 , 8 , 6 }; int n = arr.length; System.out.println(countNum(arr, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Function to count numbers to be added def countNum(arr, n): s = dict () count, maxm, minm = 0 , - 10 * * 9 , 10 * * 9 # Make a hash of elements and store # minimum and maximum element for i in range (n): s[arr[i]] = 1 if (arr[i] < minm): minm = arr[i] if (arr[i] > maxm): maxm = arr[i] # Traverse all elements from minimum # to maximum and count if it is not # in the hash for i in range (minm, maxm + 1 ): if i not in s.keys(): count + = 1 return count # Driver code arr = [ 3 , 5 , 8 , 6 ] n = len (arr) print (countNum(arr, n)) # This code is contributed by mohit kumar |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to count numbers to be added static int countNum( int []arr, int n) { HashSet< int > s = new HashSet< int >(); int count = 0, maxm = int .MinValue, minm = int .MaxValue; // Make a hash of elements // and store minimum and maximum element for ( int i = 0; i < n; i++) { s.Add(arr[i]); if (arr[i] < minm) minm = arr[i]; if (arr[i] > maxm) maxm = arr[i]; } // Traverse all elements from minimum // to maximum and count if it is not // in the hash for ( int i = minm; i <= maxm; i++) if (!s.Contains(i)) count++; return count; } // Drivers code public static void Main(String[] args) { int []arr = { 3, 5, 8, 6 }; int n = arr.Length; Console.WriteLine(countNum(arr, n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript implementation of the approach // Function to count numbers to be added function countNum(arr,n) { let s = new Set(); let count = 0, maxm = Number.MIN_VALUE, minm = Number.MAX_VALUE; // Make a hash of elements // and store minimum and maximum element for (let i = 0; i < n; i++) { s.add(arr[i]); if (arr[i] < minm) minm = arr[i]; if (arr[i] > maxm) maxm = arr[i]; } // Traverse all elements from minimum // to maximum and count if it is not // in the hash for (let i = minm; i <= maxm; i++) if (!s.has(i)) count++; return count; } // Drivers code let arr=[3, 5, 8, 6 ]; let n = arr.length; document.write(countNum(arr, n)); // This code is contributed by unknown2108 </script> |
5
Time Complexity: O(n + max – min + 1)
Auxiliary Space: O(n), for use of set
Method 3 (Use Boolean array ):
- We can initialize this array to all false.
- Then, we can iterate through the input array and mark each number that falls within the range [A,B] as true in the boolean array.
- we can count the number of false values in the boolean array, which will give us the number of missing numbers in the range [A,B].
- This count will be the number of elements that we need to add to the input array to ensure that all numbers in the range [A,B] appear at least once.
C++
#include <iostream> #include <climits> // Required for INT_MAX and INT_MIN constants using namespace std; // Function to count the number of elements to add to the array int countToAdd( int arr[], int N) { // Find the minimum and maximum values in the array int A = INT_MAX, B = INT_MIN; for ( int i = 0; i < N; i++) { A = min(A, arr[i]); B = max(B, arr[i]); } // Create a boolean array called present to keep track of which elements are in the range bool present[B - A + 1] = { false }; // Loop over the input array, and set the corresponding element in the present array to true for each element for ( int i = 0; i < N; i++) { if (!present[arr[i] - A]) { // Check if the element is in the range [A, B] present[arr[i] - A] = true ; } } // Count the number of elements that are not yet present in the present array int count = 0; for ( int i = A; i <= B; i++) { if (!present[i - A]) { // Check if the element is in the range [A, B] count++; } } // Return the count return count; } int main() { int arr[] = {4, 7, 2, 8, 5}; int N = sizeof (arr) / sizeof (arr[0]); // Call the countToAdd function to find the number of elements to add to the array int count = countToAdd(arr, N); // Output the result cout << "Number of elements to be added: " << count << endl; return 0; } |
Java
import java.util.*; class Main { // Function to count the number of elements to add to // the array static int countToAdd( int [] arr, int N) { // Find the minimum and maximum values in the array int A = Integer.MAX_VALUE, B = Integer.MIN_VALUE; for ( int i = 0 ; i < N; i++) { A = Math.min(A, arr[i]); B = Math.max(B, arr[i]); } // Create a boolean array called present to keep // track of which elements are in the range boolean [] present = new boolean [B - A + 1 ]; // Loop over the input array, and set the // corresponding element in the present array to // true for each element for ( int i = 0 ; i < N; i++) { if (!present[arr[i] - A]) { // Check if the element is // in the range [A, B] present[arr[i] - A] = true ; } } // Count the number of elements that are not yet // present in the present array int count = 0 ; for ( int i = A; i <= B; i++) { if (!present[i - A]) { // Check if the element // is in the range [A, B] count++; } } // Return the count return count; } public static void main(String[] args) { int [] arr = { 4 , 7 , 2 , 8 , 5 }; int N = arr.length; // Call the countToAdd function to find the number // of elements to add to the array int count = countToAdd(arr, N); // Output the result System.out.println( "Number of elements to be added: " + count); } } |
Python3
import sys # Function to count the number of elements to add to the array def countToAdd(arr, N): # Find the minimum and maximum values in the array A = sys.maxsize B = - sys.maxsize - 1 for i in range (N): A = min (A, arr[i]) B = max (B, arr[i]) # Create a boolean array called present to keep track of which elements are in the range present = [ False ] * (B - A + 1 ) # Loop over the input array, and set the corresponding element in the present array to true for each element for i in range (N): if not present[arr[i] - A]: # Check if the element is in the range [A, B] present[arr[i] - A] = True # Count the number of elements that are not yet present in the present array count = 0 for i in range (A, B + 1 ): if not present[i - A]: # Check if the element is in the range [A, B] count + = 1 # Return the count return count arr = [ 4 , 7 , 2 , 8 , 5 ] N = len (arr) # Call the countToAdd function to find the number of elements to add to the array count = countToAdd(arr, N) # Output the result print ( "Number of elements to be added:" , count) |
C#
using System; class GFG { // Function to count the number of elements to add to // the array static int countToAdd( int [] arr, int N) { // Find the minimum and maximum values in the array int A = int .MaxValue, B = int .MinValue; for ( int i = 0; i < N; i++) { A = Math.Min(A, arr[i]); B = Math.Max(B, arr[i]); } // Create a boolean array called present to keep // track of which elements are in the range bool [] present = new bool [B - A + 1]; // Loop over the input array, and set the // corresponding element in the present array to // true for each element for ( int i = 0; i < N; i++) { if (!present[arr[i] - A]) // Check if the element is in // the range [A, B] { present[arr[i] - A] = true ; } } // Count the number of elements that are not yet // present in the present array int count = 0; for ( int i = A; i <= B; i++) { if (!present[i - A]) // Check if the element is // in the range [A, B] { count++; } } // Return the count return count; } static void Main() { int [] arr = { 4, 7, 2, 8, 5 }; int N = arr.Length; // Call the countToAdd function to find the number // of elements to add to the array int count = countToAdd(arr, N); // Output the result Console.WriteLine( "Number of elements to be added: " + count); } } |
Javascript
function countToAdd(arr, N) { // Find the minimum and maximum values in the array let A = Number.MAX_SAFE_INTEGER; let B = Number.MIN_SAFE_INTEGER; for (let i = 0; i < N; i++) { A = Math.min(A, arr[i]); B = Math.max(B, arr[i]); } // Create a boolean array called present to keep track of which elements are in the range const present = new Array(B - A + 1).fill( false ); // Loop over the input array, and set the corresponding element in the present array to true for each element for (let i = 0; i < N; i++) { if (!present[arr[i] - A]) { // Check if the element is in the range [A, B] present[arr[i] - A] = true ; } } // Count the number of elements that are not yet present in the present array let count = 0; for (let i = A; i <= B; i++) { if (!present[i - A]) { // Check if the element is in the range [A, B] count += 1; } } // Return the count return count; } const arr = [4, 7, 2, 8, 5]; const N = arr.length; // Call the countToAdd function to find the number of elements to add to the array const count = countToAdd(arr, N); // Output the result console.log( "Number of elements to be added:" , count); |
Number of elements to be added: 2
Time Complexity: O(N + B – A), where N is the size of the input array and B – A is the size of the range [A, B]. The algorithm involves looping over the input array once to find the minimum and maximum values, and then looping over the range [A, B] to count the number of elements that are not present in the input array.
Auxiliary Space: O(B – A), as we are using a boolean array called present of size B – A + 1 to keep track of which elements are in the range [A, B]. This additional space is required to solve the problem without modifying the input array.
This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...