 GFG App
Open App Browser
Continue

# Efficient Program to Compute Sum of Series 1/1! + 1/2! + 1/3! + 1/4! + .. + 1/n!

Given a positive integer n, write a function to compute the sum of the series 1/1! + 1/2! + .. + 1/n!
A Simple Solution is to initialize the sum as 0, then run a loop and call the factorial function inside the loop.
Following is the implementation of a simple solution.

## C++

 `// A simple C++ program to compute sum of series 1/1! + 1/2! + .. + 1/n!` `#include ` `using` `namespace` `std;`   `//  Utility function to find` `int` `factorial(``int` `n)` `{` `    ``int` `res = 1;` `    ``for` `(``int` `i=2; i<=n; i++)` `       ``res *= i;` `    ``return` `res;` `}`   `// A Simple Function to return value of 1/1! + 1/2! + .. + 1/n!` `double` `sum(``int` `n)` `{` `    ``double` `sum = 0;` `    ``for` `(``int` `i = 1; i <= n; i++)` `        ``sum += 1.0/factorial(i);` `    ``return` `sum;` `}`   `// Driver program to test above functions` `int` `main()` `{` `    ``int` `n = 5;` `    ``cout << sum(n);` `    ``return` `0;` `}`

## Java

 `// A simple Java program to compute ` `// sum of series 1/1! + 1/2! + .. + 1/n!` `import` `java.io.*;`   `class` `GFG {` `    `  `    ``// Utility function to find` `    ``static` `int` `factorial(``int` `n)` `    ``{` `        ``int` `res = ``1``;` `        ``for` `(``int` `i = ``2``; i <= n; i++)` `        ``res *= i;` `        ``return` `res;` `    ``}` `    `  `    ``// A Simple Function to return value` `    ``// of 1/1! + 1/2! + .. + 1/n!` `    ``static` `double` `sum(``int` `n)` `    ``{` `        ``double` `sum = ``0``;` `        ``for` `(``int` `i = ``1``; i <= n; i++)` `            ``sum += ``1.0``/factorial(i);` `        ``return` `sum;` `    ``}`   `    ``// Driver program ` `    ``public` `static` `void` `main (String[] args) ` `    ``{` `        ``int` `n = ``5``;` `        ``System.out.println(sum(n));` `    ``}` `}`   `// This code is contributed by Ajit.`

## Python3

 `# Python3 program to compute sum of series` `# 1/1! + 1/2! + .. + 1/n!`   `# Function to find factorial of a number ` `def` `factorial(n):` `    ``res ``=` `1` `    ``for` `i ``in` `range``(``2``, n ``+` `1``):` `            ``res ``*``=` `i` `    ``return` `res` `        `  `# A Simple Function to return value ` `# of 1/1! + 1/2! + .. + 1/n!` `def` `sum``(n):` `    ``s ``=` `0.0` `    `  `    ``for` `i ``in` `range``(``1``, n ``+` `1``):` `        ``s ``+``=` `1.0` `/` `factorial(i)` `    ``print``(s)`   `# Driver program to test above functions` `n ``=` `5` `sum``(n)`   `# This code is contributed by Danish Raza`

## C#

 `// A simple C# program to compute sum ` `// of series 1/1! + 1/2! + .. + 1/n!` `using` `System;`   `class` `GFG {` `    `  `    ``// Utility function to find` `    ``static` `int` `factorial(``int` `n)` `    ``{` `        ``int` `res = 1;` `        ``for` `(``int` `i = 2; i <= n; i++)` `            ``res *= i;` `            `  `        ``return` `res;` `    ``}` `    `  `    ``// A Simple Function to return value` `    ``// of 1/1! + 1/2! + .. + 1/n!` `    ``static` `double` `sum(``int` `n)` `    ``{` `        ``double` `sum = 0;` `        ``for` `(``int` `i = 1; i <= n; i++)` `            ``sum += 1.0/factorial(i);` `            `  `        ``return` `sum;` `    ``}`   `    ``// Driver program ` `    ``public` `static` `void` `Main () ` `    ``{` `        ``int` `n = 5;` `        `  `        ``Console.WriteLine(sum(n));` `    ``}` `}`   `// This code is contributed by Sam007.`

## PHP

 ``

## Javascript

 ``

Output:

`1.71667`

Time complexity: O(n * n)

Auxiliary Space: O(1), since no extra space has been taken.
An Efficient Solution can find the sum in O(n) time. The idea is to calculate factorial in the same loop as the sum. Following is the implementation of this idea.

## C++

 `// A simple C++ program to compute sum of series 1/1! + 1/2! + .. + 1/n!` `#include ` `using` `namespace` `std;`   `// An Efficient Function to return value of 1/1! + 1/2! + .. + 1/n!` `double` `sum(``int` `n)` `{` `    ``double` `sum = 0;` `    ``int` `fact = 1;` `    ``for` `(``int` `i = 1; i <= n; i++)` `    ``{` `       ``fact *= i;         ``// Update factorial` `       ``sum += 1.0/fact;   ``// Update series sum` `    ``}` `    ``return` `sum;` `}`   `// Driver program to test above functions` `int` `main()` `{` `    ``int` `n = 5;` `    ``cout << sum(n);` `    ``return` `0;` `}`

## Java

 `// A simple Java program to compute ` `// sum of series 1/1! + 1/2! + .. + 1/n!` `import` `java.io.*;`   `class` `GFG {` `    `  `    ``// An Efficient Function to return ` `    ``// value of 1/1! + 1/2! + .. + 1/n!` `    ``static` `double` `sum(``int` `n)` `    ``{` `        ``double` `sum = ``0``;` `        ``int` `fact = ``1``;` `        ``for` `(``int` `i = ``1``; i <= n; i++)` `        ``{` `            ``// Update factorial` `            ``fact *= i;` `            `  `            ``// Update series sum` `            ``sum += ``1.0``/fact; ` `        ``}` `        ``return` `sum;` `    ``}`   `    ``// Driver program ` `    ``public` `static` `void` `main (String[] args) ` `    ``{` `        ``int` `n = ``5``;` `        ``System.out.println(sum(n));` `    ``}` `}`   `// This code is contributed by Ajit.`

## Python3

 `# Python3 program to compute sum of series ` `# 1/1! + 1/2! + .. + 1/n!`   `# Function to return value of` `# 1/1! + 1/2! + .. + 1/n!` `def` `sum``(n):` `    ``sum` `=` `0` `    ``fact ``=` `1`   `    ``for` `i ``in` `range``(``1``, n ``+` `1``):`   `        ``# Update factorial` `        ``fact ``*``=` `i `   `        ``# Update series sum` `        ``sum` `+``=` `1.0``/``fact `   `    ``print``(``sum``)`   `# Driver program to test above functions` `n ``=` `5` `sum``(n)`   `# This code is contributed by Danish Raza`

## C#

 `// A simple C# program to compute sum` `// of series 1/1! + 1/2! + .. + 1/n!` `using` `System;`   `class` `GFG {` `    `  `    ``// An Efficient Function to return ` `    ``// value of 1/1! + 1/2! + .. + 1/n!` `    ``static` `double` `sum(``int` `n)` `    ``{` `        ``double` `sum = 0;` `        ``int` `fact = 1;` `        `  `        ``for` `(``int` `i = 1; i <= n; i++)` `        ``{` `            `  `            ``// Update factorial` `            ``fact *= i;` `            `  `            ``// Update series sum` `            ``sum += 1.0 / fact; ` `        ``}` `        ``return` `sum;` `    ``}`   `    ``// Driver program ` `    ``public` `static` `void` `Main () ` `    ``{` `        ``int` `n = 5;` `        `  `        ``Console.WriteLine(sum(n));` `    ``}` `}`   `// This code is contributed by Sam007.`

## PHP

 ``

## Javascript

 ``

Output:

`1.71667`

Time complexity: O(n) since using a single loop

Auxiliary Space: O(1), since no extra space has been taken.