Skip to content
Related Articles

Related Articles

DP on Trees | Set-3 ( Diameter of N-ary Tree )

Improve Article
Save Article
Like Article
  • Difficulty Level : Medium
  • Last Updated : 28 Apr, 2022

Given an N-ary tree T of N nodes, the task is to calculate the longest path between any two nodes(also known as the diameter of the tree). 
Example 1: 
 

Example 2: 
 

 

Different approaches to solve these problems have already been discussed: 
 

In this post, we will be discussing an approach which uses Dynamic Programming on Trees
Prerequisites
 

There are two possibilities for the diameter to exist: 
 

  • Case 1: Suppose the diameter starts from a node and ends at some node in its subtree. Let’s say that there exist a node x such that the longest path starts from node x and goes into its subtree and ends at some node in the subtree itself. Let’s define this path length by dp1[x].
  • Case 2: Suppose the diameter or the longest path starts in subtree of a node x, passes through it and ends in it’s subtree. Let’s define this path by dp2[x].

If for all nodes x, we take a maximum of dp1[x], dp2[x], then we will get the diameter of the tree. 
For the case-1, to find dp1[node], we need to find the maximum of all dp1[x], where x is the children of node. And dp1[node] will be equal to 1 + max(dp1[children1], dp1[children2], ..)
For the case-2, to find dp2[node], we need to find the two maximum of all dp1[x], where x is the children of node. And dp2[node] will be equal to 1 + max 2 of(dp1[children1], dp1[children2], ..) + max(dp1[children1], dp1[children2], ..). This will ensure a complete path passing through the current node into its subtree.
We can easily run a DFS and find the maximum of both dp1[node] and dp2[node] for every to get the diameter of the tree. 
Below is the implementation of the above approach:
 

C++




// C++ program to find diameter of a tree
// using DFS.
#include <bits/stdc++.h>
using namespace std;
  
int diameter = -1;
  
// Function to find the diameter of the tree
// using Dynamic Programming
int dfs(int node, int parent, int dp1[], int dp2[], list<int>* adj)
{
  
    // Store the first maximum and secondmax
    int firstmax = -1;
    int secondmax = -1;
  
    // Traverse for all children of node
    for (auto i = adj[node].begin(); i != adj[node].end(); ++i) {
        if (*i == parent)
            continue;
  
        // Call DFS function again
        dfs(*i, node, dp1, dp2, adj);
  
        // Find first max
        if (firstmax == -1) {
            firstmax = dp1[*i];
        }
        else if (dp1[*i] >= firstmax) // Secondmaximum
        {
            secondmax = firstmax;
            firstmax = dp1[*i];
        }
        else if (dp1[*i] > secondmax) // Find secondmaximum
        {
            secondmax = dp1[*i];
        }
    }
  
    // Base case for every node
    dp1[node] = 1;
    if (firstmax != -1) // Add
        dp1[node] += firstmax;
  
    // Find dp[2]
    if (secondmax != -1)
        dp2[node] = 1 + firstmax + secondmax;
  
    diameter = max(diameter, max(dp1[node], dp2[node]));
    // Return maximum of both
    return max(dp1[node], dp2[node]);
}
  
// Driver Code
int main()
{
    int n = 5;
  
    /* Constructed tree is 
         
        / \ 
        2 3 
       / \ 
       4  5 */
    list<int>* adj = new list<int>[n + 1];
  
    /*create undirected edges */
    adj[1].push_back(2);
    adj[2].push_back(1);
    adj[1].push_back(3);
    adj[3].push_back(1);
    adj[2].push_back(4);
    adj[4].push_back(2);
    adj[2].push_back(5);
    adj[5].push_back(2);
  
    int dp1[n + 1], dp2[n + 1];
    memset(dp1, 0, sizeof dp1);
    memset(dp2, 0, sizeof dp2);
  
    // Find diameter by calling function
    dfs(1, 1, dp1, dp2, adj)
    cout << "Diameter of the given tree is "
         << diameter << endl;
  
    return 0;
}


Java




// Java program to find diameter of a tree using DFS.
import java.util.*;
public class Main
{
    // Function to find the diameter of the tree
    // using Dynamic Programming
    static int dfs(int node, int parent, int[] dp1, int[] dp2, Vector<Vector<Integer>> adj)
    {
    
        // Store the first maximum and secondmax
        int firstmax = -1;
        int secondmax = -1;
    
        // Traverse for all children of node
        for (int i = 0; i < adj.get(node).size(); ++i) {
            if (adj.get(node).get(i) == parent)
                continue;
    
            // Call DFS function again
            dfs(adj.get(node).get(i), node, dp1, dp2, adj);
    
            // Find first max
            if (firstmax == -1) {
                firstmax = dp1[adj.get(node).get(i)];
            }
            // Secondmaximum
            else if (dp1[adj.get(node).get(i)] >= firstmax)
            {
                secondmax = firstmax;
                firstmax = dp1[adj.get(node).get(i)];
            }
            // Find secondmaximum
            else if (dp1[adj.get(node).get(i)] > secondmax)
            {
                secondmax = dp1[adj.get(node).get(i)];
            }
        }
    
        // Base case for every node
        dp1[node] = 1;
        if (firstmax != -1) // Add
            dp1[node] += firstmax;
    
        // Find dp[2]
        if (secondmax != -1)
            dp2[node] = 1 + firstmax + secondmax;
    
        // Return maximum of both
        return Math.max(dp1[node], dp2[node]);
    }
      
    public static void main(String[] args) {
        int n = 5;
    
        /* Constructed tree is
             1
            / \
            2 3
           / \
           4  5 */
        Vector<Vector<Integer>> adj = new Vector<Vector<Integer>>();
           
        for(int i = 0; i < n + 1; i++)
        {
            adj.add(new Vector<Integer>());
        }
        
        /*create undirected edges */
        adj.get(1).add(2);
        adj.get(2).add(1);
        adj.get(1).add(3);
        adj.get(3).add(1);
        adj.get(2).add(4);
        adj.get(4).add(2);
        adj.get(2).add(5);
        adj.get(5).add(2);
        
        int[] dp1 = new int[n + 1];
        int[] dp2 = new int[n + 1];
           
        for(int i = 0; i < n + 1; i++)
        {
            dp1[i] = 0;
            dp2[i] = 0;
        }
        
        // Find diameter by calling function
        System.out.println("Diameter of the given tree is "
             + dfs(1, 1, dp1, dp2, adj));
    }
}
  
// This code is contributed by divyeshrabadiya07.


Python3




# Python3 program to find diameter 
# of a tree using DFS. 
  
# Function to find the diameter of the 
# tree using Dynamic Programming 
def dfs(node, parent, dp1, dp2, adj): 
  
    # Store the first maximum and secondmax 
    firstmax, secondmax = -1, -1
  
    # Traverse for all children of node 
    for i in adj[node]: 
        if i == parent: 
            continue
  
        # Call DFS function again 
        dfs(i, node, dp1, dp2, adj) 
  
        # Find first max 
        if firstmax == -1
            firstmax = dp1[i] 
          
        elif dp1[i] >= firstmax: # Secondmaximum 
            secondmax = firstmax 
            firstmax = dp1[i] 
          
        elif dp1[i] > secondmax: # Find secondmaximum 
            secondmax = dp1[i] 
  
    # Base case for every node 
    dp1[node] = 1
    if firstmax != -1: # Add 
        dp1[node] += firstmax 
  
    # Find dp[2] 
    if secondmax != -1:
        dp2[node] = 1 + firstmax + secondmax 
    diameter = max(diameter, max(dp1[node], dp2[node]));
    # Return maximum of both 
    return max(dp1[node], dp2[node]) 
  
# Driver Code 
if __name__ == "__main__":
  
    n, diameter = 5, -1
  
    adj = [[] for i in range(n + 1)]
      
    # create undirected edges
    adj[1].append(2
    adj[2].append(1
    adj[1].append(3
    adj[3].append(1
    adj[2].append(4
    adj[4].append(2
    adj[2].append(5
    adj[5].append(2
  
    dp1 = [0] * (n + 1
    dp2 = [0] * (n + 1
      
    # Find diameter by calling function 
    dfs(1, 1, dp1, dp2, adj)
    print("Diameter of the given tree is",
                diameter )
  
# This code is contributed by Rituraj Jain 


C#




// C# program to find diameter of a tree using DFS.
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to find the diameter of the tree
    // using Dynamic Programming
    static int dfs(int node, int parent, int[] dp1, int[] dp2, List<List<int>> adj)
    {
   
        // Store the first maximum and secondmax
        int firstmax = -1;
        int secondmax = -1;
   
        // Traverse for all children of node
        for (int i = 0; i < adj[node].Count; ++i) {
            if (adj[node][i] == parent)
                continue;
   
            // Call DFS function again
            dfs(adj[node][i], node, dp1, dp2, adj);
   
            // Find first max
            if (firstmax == -1) {
                firstmax = dp1[adj[node][i]];
            }
            // Secondmaximum
            else if (dp1[adj[node][i]] >= firstmax)
            {
                secondmax = firstmax;
                firstmax = dp1[adj[node][i]];
            }
            // Find secondmaximum
            else if (dp1[adj[node][i]] > secondmax)
            {
                secondmax = dp1[adj[node][i]];
            }
        }
   
        // Base case for every node
        dp1[node] = 1;
        if (firstmax != -1) // Add
            dp1[node] += firstmax;
   
        // Find dp[2]
        if (secondmax != -1)
            dp2[node] = 1 + firstmax + secondmax;
          
        // diameter = Math.Max(diameter, Math.Max(dp1[node], dp2[node]));
        // Return maximum of both
        return Math.Max(dp1[node], dp2[node]);
    }
  
  static void Main() {
    int n = 5;
   
    /* Constructed tree is
         1
        / \
        2 3
       / \
       4  5 */
    List<List<int>> adj = new List<List<int>>();
      
    for(int i = 0; i < n + 1; i++)
    {
        adj.Add(new List<int>());
    }
   
    /*create undirected edges */
    adj[1].Add(2);
    adj[2].Add(1);
    adj[1].Add(3);
    adj[3].Add(1);
    adj[2].Add(4);
    adj[4].Add(2);
    adj[2].Add(5);
    adj[5].Add(2);
   
    int[] dp1 = new int[n + 1];
    int[] dp2 = new int[n + 1];
      
    for(int i = 0; i < n + 1; i++)
    {
        dp1[i] = 0;
        dp2[i] = 0;
    }
   
    // Find diameter by calling function
      
    Console.WriteLine("Diameter of the given tree is "
         + dfs(1, 1, dp1, dp2, adj));
  }
}
  
// This code is contributed by decode2207.


Javascript




<script>
  
    // JavaScript program to find diameter of a tree using DFS.
      
    let diameter = -1;
    
    // Function to find the diameter of the tree
    // using Dynamic Programming
    function dfs(node, parent, dp1, dp2, adj)
    {
  
        // Store the first maximum and secondmax
        let firstmax = -1;
        let secondmax = -1;
  
        // Traverse for all children of node
        for (let i = 0; i < adj[node].length; ++i) {
            if (adj[node][i] == parent)
                continue;
  
            // Call DFS function again
            dfs(adj[node][i], node, dp1, dp2, adj);
  
            // Find first max
            if (firstmax == -1) {
                firstmax = dp1[adj[node][i]];
            }
            // Secondmaximum
            else if (dp1[adj[node][i]] >= firstmax) 
            {
                secondmax = firstmax;
                firstmax = dp1[adj[node][i]];
            }
            // Find secondmaximum
            else if (dp1[adj[node][i]] > secondmax) 
            {
                secondmax = dp1[adj[node][i]];
            }
        }
  
        // Base case for every node
        dp1[node] = 1;
        if (firstmax != -1) // Add
            dp1[node] += firstmax;
  
        // Find dp[2]
        if (secondmax != -1)
            dp2[node] = 1 + firstmax + secondmax;
        diameter = Math.max(diameter, Math.max(dp1[node], dp2[node]));
        // Return maximum of both
        return Math.max(dp1[node], dp2[node]);
    }
      
    let n = 5;
    
    /* Constructed tree is 
         
        / \ 
        2 3 
       / \ 
       4  5 */
    let adj = new Array(n + 1);
    for(let i = 0; i < n + 1; i++)
    {
        adj[i] = [];
    }
    
    /*create undirected edges */
    adj[1].push(2);
    adj[2].push(1);
    adj[1].push(3);
    adj[3].push(1);
    adj[2].push(4);
    adj[4].push(2);
    adj[2].push(5);
    adj[5].push(2);
    
    let dp1 = new Array(n + 1);
    let dp2 = new Array(n + 1);
    dp1.fill(0);
    dp2.fill(0);
    
    // Find diameter by calling function
    dfs(1, 1, dp1, dp2, adj)
  
    document.write("Diameter of the given tree is "
         + diameter);
  
</script>


Output: 

Diameter of the given tree is 4

 

Time Complexity: O(n)

Auxiliary Space: O(n)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!