Double ended priority queue
A double ended priority queue supports operations of both max heap (a max priority queue) and min heap (a min priority queue). The following operations are expected from double ended priority queue.
- getMax() : Returns maximum element.
- getMin() : Returns minimum element.
- deleteMax() : Deletes maximum element.
- deleteMin() : Deletes minimum element.
- size() : Returns count of elements.
- isEmpty() : Returns true if the queue is empty.
We can try different data structure like Linked List. In case of linked list, if we maintain elements in sorted order, then time complexity of all operations become O(1) except the operation insert() which takes O(n) time.
We can try two heaps (min heap and max heap). We maintain a pointer of every max heap element in min heap. To get minimum element, we simply return root. To get maximum element, we return root of max heap. To insert an element, we insert in min heap and max heap both. The main idea is to maintain one to one correspondence, so that deleteMin() and deleteMax() can be done in O(Log n) time.
- getMax() : O(1)
- getMin() : O(1)
- deleteMax() : O(Log n)
- deleteMin() : O(Log n)
- size() : O(1)
- isEmpty() : O(1)
Another solution is to use self balancing binary search tree. A self balancing BST is implemented as set in C++ and TreeSet in Java.
- getMax() : O(1)
- getMin() : O(1)
- deleteMax() : O(Log n)
- deleteMin() : O(Log n)
- size() : O(1)
- isEmpty() : O(1)
Below is the implementation of above approach:
C++
// C++ program to implement double-ended // priority queue using self balancing BST. #include <bits/stdc++.h> using namespace std; struct DblEndedPQ { set< int > s; // Returns size of the queue. Works in // O(1) time int size() { return s.size(); } // Returns true if queue is empty. Works // in O(1) time bool isEmpty() { return (s.size() == 0); } // Inserts an element. Works in O(Log n) // time void insert( int x) { s.insert(x); } // Returns minimum element. Works in O(1) // time int getMin() { return *(s.begin()); } // Returns maximum element. Works in O(1) // time int getMax() { return *(s.rbegin()); } // Deletes minimum element. Works in O(Log n) // time void deleteMin() { if (s.size() == 0) return ; s.erase(s.begin()); } // Deletes maximum element. Works in O(Log n) // time void deleteMax() { if (s.size() == 0) return ; auto it = s.end(); it--; s.erase(it); } }; // Driver code int main() { DblEndedPQ d; d.insert(10); d.insert(50); d.insert(40); d.insert(20); cout << d.getMin() << endl; cout << d.getMax() << endl; d.deleteMax(); cout << d.getMax() << endl; d.deleteMin(); cout << d.getMin() << endl; return 0; } |
Java
// Java program to implement double-ended // priority queue using self balancing BST. import java.util.*; class solution { static class DblEndedPQ { Set<Integer> s; DblEndedPQ() { s= new HashSet<Integer>(); } // Returns size of the queue. Works in // O(1) time int size() { return s.size(); } // Returns true if queue is empty. Works // in O(1) time boolean isEmpty() { return (s.size() == 0 ); } // Inserts an element. Works in O(Log n) // time void insert( int x) { s.add(x); } // Returns minimum element. Works in O(1) // time int getMin() { return Collections.min(s, null ); } // Returns maximum element. Works in O(1) // time int getMax() { return Collections.max(s, null ); } // Deletes minimum element. Works in O(Log n) // time void deleteMin() { if (s.size() == 0 ) return ; s.remove(Collections.min(s, null )); } // Deletes maximum element. Works in O(Log n) // time void deleteMax() { if (s.size() == 0 ) return ; s.remove(Collections.max(s, null )); } }; // Driver code public static void main(String args[]) { DblEndedPQ d= new DblEndedPQ(); d.insert( 10 ); d.insert( 50 ); d.insert( 40 ); d.insert( 20 ); System.out.println( d.getMin() ); System.out.println(d.getMax() ); d.deleteMax(); System.out.println( d.getMax() ); d.deleteMin(); System.out.println( d.getMin() ); } } //contributed by Arnab Kundu |
C#
// C# program to implement double-ended // priority queue using self balancing BST. using System; using System.Linq; using System.Collections.Generic; class GFG { public class DblEndedPQ { HashSet< int > s; public DblEndedPQ() { s = new HashSet< int >(); } // Returns size of the queue. Works in // O(1) time public int size() { return s.Count; } // Returns true if queue is empty. Works // in O(1) time public bool isEmpty() { return (s.Count == 0); } // Inserts an element. Works in O(Log n) // time public void insert( int x) { s.Add(x); } // Returns minimum element. Works in O(1) // time public int getMin() { return s.Min(); } // Returns maximum element. Works in O(1) // time public int getMax() { return s.Max(); } // Deletes minimum element. Works in O(Log n) // time public void deleteMin() { if (s.Count == 0) return ; s.Remove(s.Min()); } // Deletes maximum element. Works in O(Log n) // time public void deleteMax() { if (s.Count == 0) return ; s.Remove(s.Max()); } }; // Driver code public static void Main(String[] args) { DblEndedPQ d= new DblEndedPQ(); d.insert(10); d.insert(50); d.insert(40); d.insert(20); Console.WriteLine( d.getMin() ); Console.WriteLine(d.getMax() ); d.deleteMax(); Console.WriteLine( d.getMax() ); d.deleteMin(); Console.WriteLine( d.getMin() ); } } // This code contributed by Rajput-Ji |
Javascript
<script> // JavaScript program to implement double-ended // priority queue using self balancing BST. class DblEndedPQ { constructor() { this .s = new Set(); } // Returns size of the queue. Works in // O(1) time size() { return this .s.size; } // Returns true if queue is empty. Works // in O(1) time isEmpty() { return this .s.size == 0; } // Inserts an element. Works in O(Log n) // time insert(x) { this .s.add(x); } // Returns minimum element. Works in O(1) // time getMin() { return Math.min(...Array.from( this .s.values())); } // Returns maximum element. Works in O(1) // time getMax() { return Math.max(...Array.from( this .s.values())); } // Deletes minimum element. Works in O(Log n) // time deleteMin() { if ( this .s.size == 0) return ; this .s. delete ( this .getMin()); } // Deletes maximum element. Works in O(Log n) // time deleteMax() { if ( this .s.size == 0) return ; this .s. delete ( this .getMax()); } } // Driver code var d = new DblEndedPQ(); d.insert(10); d.insert(50); d.insert(40); d.insert(20); document.write(d.getMin() + "<br>" ); document.write(d.getMax() + "<br>" ); d.deleteMax(); document.write(d.getMax() + "<br>" ); d.deleteMin(); document.write(d.getMin() + "<br>" ); // This code is contributed by rdtank. </script> |
Python3
# Python code for the above approach class DblEndedPQ: def __init__( self ): self .s = set () # Returns size of the queue. Works in # O(1) time def size( self ): return len ( self .s) # Returns true if queue is empty. Works # in O(1) time def isEmpty( self ): return len ( self .s) = = 0 # Inserts an element. Works in O(Log n) # time def insert( self , x): self .s.add(x) # Returns minimum element. Works in O(1) # time def getMin( self ): return min ( self .s) # Returns maximum element. Works in O(1) # time def getMax( self ): return max ( self .s) # Deletes minimum element. Works in O(Log n) # time def deleteMin( self ): if len ( self .s) = = 0 : return self .s.remove( self .getMin()) # Deletes maximum element. Works in O(Log n) # time def deleteMax( self ): if len ( self .s) = = 0 : return self .s.remove( self .getMax()) # Driver code d = DblEndedPQ() d.insert( 10 ) d.insert( 50 ) d.insert( 40 ) d.insert( 20 ) print (d.getMin()) print (d.getMax()) d.deleteMax() print (d.getMax()) d.deleteMin() print (d.getMin()) # This code is contributed by codebraxnzt |
10 50 40 20
Comparison of Heap and BST solutions
Heap based solution requires O(n) extra space for an extra heap. BST based solution does not require extra space. The advantage of heap based solution is cache friendly.
Please Login to comment...