Distinct Prime Factors of an Array
Given an array arr[] of size N, the task is to find the distinct prime factors of all the numbers in the given array.
Examples:
Input: N = 3, arr[] = {12, 15, 18}
Output: 2 3 5
Explanation:
12 = 2 x 2 x 3
15 = 3 x 5
18 = 2 x 3 x 3
Distinct prime factors among the given numbers are 2, 3, 5.Input: N = 9, arr[] = {2, 3, 4, 5, 6, 7, 8, 9, 10}
Output: 2 3 5 7
Naive Approach: A simple approach of this problem will be finding the prime factors of each number in the array. Then find the distinct prime numbers among these prime factors.
Time Complexity: O(N2)
Efficient Approach: An efficient approach is to first find all prime numbers up to the given limit using Sieve of Eratosthenes and store them in an array. For every prime number in the prime array, check if any number in the input array is divisible or not. If it is divisible, then store that prime number in the answer array. Finally, return the answer array after repeating this process for all the numbers in the given input array.
Below is the implementation of the above approach:
C++14
#include <bits/stdc++.h> using namespace std; //cppimplementation of the above approach //Function to return an array //of prime numbers upto n //using Sieve of Eratosthenes vector< int > sieve( int n){ vector< int > prime (n + 1,0); int p = 2; while (p * p<= n){ if (prime[p]== 0){ for ( int i=2*p;i<n+1;i+=p) prime[i]= 1; } p+= 1; } vector< int > allPrimes; for ( int i =2;i<n;i++) if (prime[i]==0) allPrimes.push_back(i); return allPrimes; } //Function to return distinct //prime factors from the given array vector< int > distPrime(vector< int > arr, vector< int > allPrimes){ //Creating an empty array //to store distinct prime factors vector< int > list1; //Iterating through all the //prime numbers and check if //any of the prime numbers is a //factor of the given input array for ( int i : allPrimes){ for ( int j :arr){ if (j % i == 0){ list1.push_back(i); break ; } } } return list1; } //Driver code int main() { //Finding prime numbers upto 10000 //using Sieve of Eratosthenes vector< int > allPrimes = sieve(10000); vector< int > arr = {15, 30, 60}; vector< int > ans = distPrime(arr, allPrimes); cout<< "[" ; for ( int i:ans) cout<<i<< " " ; cout<< "]" ; } |
Java
// Java implementation of the above approach import java.util.*; class GFG { // Function to return an array // of prime numbers upto n // using Sieve of Eratosthenes static ArrayList<Integer> sieve( int n){ ArrayList<Integer> prime = new ArrayList<Integer>(); for ( int i = 0 ; i < n + 1 ; i++) prime.add( 0 ); int p = 2 ; while (p * p <= n){ if (prime.get(p) == 0 ){ for ( int i = 2 * p; i < n + 1 ; i += p) prime.set(i, 1 ); } p += 1 ; } ArrayList<Integer> allPrimes = new ArrayList<Integer>(); for ( int i = 2 ; i < n; i++){ if (prime.get(i) == 0 ) allPrimes.add(i); } return allPrimes; } // Function to return distinct // prime factors from the given array static ArrayList<Integer> distPrime(ArrayList<Integer> arr, ArrayList<Integer> allPrimes){ // Creating an empty array // to store distinct prime factors ArrayList<Integer> list1 = new ArrayList<Integer>(); // Iterating through all the // prime numbers and check if // any of the prime numbers is a // factor of the given input array for ( int i = 0 ; i < allPrimes.size(); i++){ for ( int j = 0 ; j < arr.size(); j++){ if (arr.get(j) % allPrimes.get(i) == 0 ){ list1.add(allPrimes.get(i)); break ; } } } return list1; } // Driver code public static void main(String args[]) { // Finding prime numbers upto 10000 // using Sieve of Eratosthenes ArrayList<Integer> allPrimes = new ArrayList<Integer>(sieve( 10000 )); ArrayList<Integer> arr = new ArrayList<Integer>(); arr.add( 15 ); arr.add( 30 ); arr.add( 60 ); ArrayList<Integer> ans = new ArrayList<Integer>(distPrime(arr, allPrimes)); System.out.print( "[" ); for ( int i = 0 ; i < ans.size(); i++) System.out.print(ans.get(i) + " " ); System.out.print( "]" ); } } // This code is contributed by Surendra_Gangwar |
Python3
# Python3 implementation of the above approach # Function to return an array # of prime numbers upto n # using Sieve of Eratosthenes def sieve(n): prime = [ True ] * (n + 1 ) p = 2 while (p * p< = n): if (prime[p] = = True ): for i in range (p * p, n + 1 , p): prime[i] = False p + = 1 allPrimes = [x for x in range ( 2 , n) if prime[x]] return allPrimes # Function to return distinct # prime factors from the given array def distPrime(arr, allPrimes): # Creating an empty array # to store distinct prime factors list1 = list () # Iterating through all the # prime numbers and check if # any of the prime numbers is a # factor of the given input array for i in allPrimes: for j in arr: if (j % i = = 0 ): list1.append(i) break return list1 # Driver code if __name__ = = "__main__" : # Finding prime numbers upto 10000 # using Sieve of Eratosthenes allPrimes = sieve( 10000 ) arr = [ 15 , 30 , 60 ] ans = distPrime(arr, allPrimes) print (ans) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; class GFG { // Function to return an array // of prime numbers upto n // using Sieve of Eratosthenes static List< int > sieve( int n) { List< int > prime = new List< int >(); for ( int i = 0; i < n + 1; i++) prime.Add(0); int p = 2; while (p * p <= n) { if (prime[p] == 0) { for ( int i = 2 * p; i < n + 1; i += p) prime[i]= 1; } p += 1; } List< int > allPrimes = new List< int >(); for ( int i = 2; i < n; i++){ if (prime[i] == 0) allPrimes.Add(i); } return allPrimes; } // Function to return distinct // prime factors from the given array static List< int > distPrime(List< int > arr, List< int > allPrimes){ // Creating an empty array // to store distinct prime factors List< int > list1 = new List< int >(); // Iterating through all the // prime numbers and check if // any of the prime numbers is a // factor of the given input array for ( int i = 0; i < allPrimes.Count; i++){ for ( int j = 0; j < arr.Count; j++){ if (arr[j] % allPrimes[i] == 0){ list1.Add(allPrimes[i]); break ; } } } return list1; } // Driver code public static void Main( string []args) { // Finding prime numbers upto 10000 // using Sieve of Eratosthenes List< int > allPrimes = new List< int >(sieve(10000)); List< int > arr = new List< int >(); arr.Add(15); arr.Add(30); arr.Add(60); List< int > ans = new List< int >(distPrime(arr, allPrimes)); Console.Write( "[" ); for ( int i = 0; i < ans.Count; i++) Console.Write(ans[i] + " " ); Console.Write( "]" ); } } // This code is contributed by chitranayal |
Javascript
<script> // Javascript implementation of the above approach // Function to return an array // of prime numbers upto n // using Sieve of Eratosthenes function sieve(n) { let prime = []; for (let i = 0; i < n + 1; i++) prime.push(0); let p = 2; while (p * p <= n) { if (prime[p] == 0) { for (let i = 2 * p; i < n + 1; i += p) prime[i] = 1; } p += 1; } let allPrimes = []; for (let i = 2; i < n; i++) { if (prime[i] == 0) allPrimes.push(i); } return allPrimes; } // Function to return distinct // prime factors from the given array function distPrime(arr, allPrimes) { // Creating an empty array // to store distinct prime factors let list1 = []; // Iterating through all the // prime numbers and check if // any of the prime numbers is a // factor of the given input array for (let i = 0; i < allPrimes.length; i++) { for (let j = 0; j < arr.length; j++) { if (arr[j] % allPrimes[i] == 0) { list1.push(allPrimes[i]); break ; } } } return list1; } // Driver code // Finding prime numbers upto 10000 // using Sieve of Eratosthenes let allPrimes = sieve(10000); let arr = []; arr.push(15); arr.push(30); arr.push(60); let ans = distPrime(arr, allPrimes); document.write( "[" ); for (let i = 0; i < ans.length; i++) document.write(ans[i] + " " ); document.write( "]" ); // This code is contributed by avanitrachhadiya2155 </script> |
[2, 3, 5]
Auxiliary Space: O(10000 + |arr|)
Please Login to comment...