Difference Array | Range update query in O(1)
Consider an array A[] of integers and following two types of queries.
- update(l, r, x) : Adds x to all values from A[l] to A[r] (both inclusive).
- printArray() : Prints the current modified array.
Examples :
Input : A [] { 10, 5, 20, 40 } update(0, 1, 10) printArray() update(1, 3, 20) update(2, 2, 30) printArray() Output : 20 15 20 40 20 35 70 60 Explanation : The query update(0, 1, 10) adds 10 to A[0] and A[1]. After update, A[] becomes {20, 15, 20, 40} Query update(1, 3, 20) adds 20 to A[1], A[2] and A[3]. After update, A[] becomes {20, 35, 40, 60}. Query update(2, 2, 30) adds 30 to A[2]. After update, A[] becomes {20, 35, 70, 60}.
A simple solution is to do following :
- update(l, r, x) : Run a loop from l to r and add x to all elements from A[l] to A[r]
- printArray() : Simply print A[].
Time complexities of both of the above operations is O(n)
An efficient solution is to use difference array.
Difference array D[i] of a given array A[i] is defined as D[i] = A[i]-A[i-1] (for 0 < i < N ) and D[0] = A[0] considering 0 based indexing. Difference array can be used to perform range update queries “l r x” where l is left index, r is right index and x is value to be added and after all queries you can return original array from it. Where update range operations can be performed in O(1) complexity.
- update(l, r, x) : Add x to D[l] and subtract it from D[r+1], i.e., we do D[l] += x, D[r+1] -= x
- printArray() : Do A[0] = D[0] and print it. For rest of the elements, do A[i] = A[i-1] + D[i] and print them.
Time complexity of update here is improved to O(1). Note that printArray() still takes O(n) time.
C++
// C++ code to demonstrate Difference Array #include <bits/stdc++.h> using namespace std; // Creates a diff array D[] for A[] and returns // it after filling initial values. vector< int > initializeDiffArray(vector< int >& A) { int n = A.size(); // We use one extra space because // update(l, r, x) updates D[r+1] vector< int > D(n + 1); D[0] = A[0], D[n] = 0; for ( int i = 1; i < n; i++) D[i] = A[i] - A[i - 1]; return D; } // Does range update void update(vector< int >& D, int l, int r, int x) { D[l] += x; D[r + 1] -= x; } // Prints updated Array int printArray(vector< int >& A, vector< int >& D) { for ( int i = 0; i < A.size(); i++) { if (i == 0) A[i] = D[i]; // Note that A[0] or D[0] decides // values of rest of the elements. else A[i] = D[i] + A[i - 1]; cout << A[i] << " " ; } cout << endl; } // Driver Code int main() { // Array to be updated vector< int > A{ 10, 5, 20, 40 }; // Create and fill difference Array vector< int > D = initializeDiffArray(A); // After below update(l, r, x), the // elements should become 20, 15, 20, 40 update(D, 0, 1, 10); printArray(A, D); // After below updates, the // array should become 20, 35, 70, 60 update(D, 1, 3, 20); update(D, 2, 2, 30); printArray(A, D); return 0; } |
Java
// Java code to demonstrate Difference Array class GFG { // Creates a diff array D[] for A[] and returns // it after filling initial values. static void initializeDiffArray( int A[], int D[]) { int n = A.length; D[ 0 ] = A[ 0 ]; D[n] = 0 ; for ( int i = 1 ; i < n; i++) D[i] = A[i] - A[i - 1 ]; } // Does range update static void update( int D[], int l, int r, int x) { D[l] += x; D[r + 1 ] -= x; } // Prints updated Array static int printArray( int A[], int D[]) { for ( int i = 0 ; i < A.length; i++) { if (i == 0 ) A[i] = D[i]; // Note that A[0] or D[0] decides // values of rest of the elements. else A[i] = D[i] + A[i - 1 ]; System.out.print(A[i] + " " ); } System.out.println(); return 0 ; } // Driver Code public static void main(String[] args) { // Array to be updated int A[] = { 10 , 5 , 20 , 40 }; int n = A.length; // Create and fill difference Array // We use one extra space because // update(l, r, x) updates D[r+1] int D[] = new int [n + 1 ]; initializeDiffArray(A, D); // After below update(l, r, x), the // elements should become 20, 15, 20, 40 update(D, 0 , 1 , 10 ); printArray(A, D); // After below updates, the // array should become 30, 35, 70, 60 update(D, 1 , 3 , 20 ); update(D, 2 , 2 , 30 ); printArray(A, D); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 code to demonstrate Difference Array # Creates a diff array D[] for A[] and returns # it after filling initial values. def initializeDiffArray( A): n = len (A) # We use one extra space because # update(l, r, x) updates D[r+1] D = [ 0 for i in range ( 0 , n + 1 )] D[ 0 ] = A[ 0 ]; D[n] = 0 for i in range ( 1 , n ): D[i] = A[i] - A[i - 1 ] return D # Does range update def update(D, l, r, x): D[l] + = x D[r + 1 ] - = x # Prints updated Array def printArray(A, D): for i in range ( 0 , len (A)): if (i = = 0 ): A[i] = D[i] # Note that A[0] or D[0] decides # values of rest of the elements. else : A[i] = D[i] + A[i - 1 ] print (A[i], end = " " ) print ("") # Driver Code A = [ 10 , 5 , 20 , 40 ] # Create and fill difference Array D = initializeDiffArray(A) # After below update(l, r, x), the # elements should become 20, 15, 20, 40 update(D, 0 , 1 , 10 ) printArray(A, D) # After below updates, the # array should become 30, 35, 70, 60 update(D, 1 , 3 , 20 ) update(D, 2 , 2 , 30 ) printArray(A, D) # This code is contributed by Gitanjali. |
C#
// C# code to demonstrate Difference Array using System; class GFG { // Creates a diff array D[] for A[] and returns // it after filling initial values. static void initializeDiffArray( int []A, int []D) { int n = A.Length; D[0] = A[0]; D[n] = 0; for ( int i = 1; i < n; i++) D[i] = A[i] - A[i - 1]; } // Does range update static void update( int []D, int l, int r, int x) { D[l] += x; D[r + 1] -= x; } // Prints updated Array static int printArray( int []A, int []D) { for ( int i = 0; i < A.Length; i++) { if (i == 0) A[i] = D[i]; // Note that A[0] or D[0] decides // values of rest of the elements. else A[i] = D[i] + A[i - 1]; Console.Write(A[i] + " " ); } Console.WriteLine(); return 0; } // Driver Code public static void Main() { // Array to be updated int []A = { 10, 5, 20, 40 }; int n = A.Length; // Create and fill difference Array // We use one extra space because // update(l, r, x) updates D[r+1] int []D = new int [n + 1]; initializeDiffArray(A, D); // After below update(l, r, x), the // elements should become 20, 15, 20, 40 update(D, 0, 1, 10); printArray(A, D); // After below updates, the // array should become 30, 35, 70, 60 update(D, 1, 3, 20); update(D, 2, 2, 30); printArray(A, D); } } // This code is contributed by vt_m. |
Javascript
<script> // JavaScript code to demonstrate Difference Array // Creates a diff array D[] for A[] and returns // it after filling initial values. function initializeDiffArray( A){ let n = A.length; // We use one extra space because // update(l, r, x) updates D[r+1] let D= []; D[0] = A[0], D[n] = 0; for (let i = 1; i < n; i++) D[i] = A[i] - A[i - 1]; return D; } // Does range update function update(D, l, r, x){ D[l] += x; D[r + 1] -= x; return D; } // Prints updated Array function printArray( A, D){ for (let i = 0; i < A.length; i++) { if (i == 0) A[i] = D[i]; // Note that A[0] or D[0] decides // values of rest of the elements. else A[i] = D[i] + A[i - 1]; document.write( A[i]+ " " ); } document.write( "<br>" ); } // Driver Code // Array to be updated let A = [ 10, 5, 20, 40 ]; // Create and fill difference Array let D = initializeDiffArray(A); // After below update(l, r, x), the // elements should become 20, 15, 20, 40 D = update(D, 0, 1, 10); printArray(A, D); // After below updates, the // array should become 30, 35, 70, 60 D = update(D, 1, 3, 20); D = update(D, 2, 2, 30); printArray(A, D); </script> |
Output:
20 15 20 40 20 35 70 60
Time complexity: O(n)
Auxiliary Space: O(n)
Please Login to comment...