# Diameter of a Binary Tree

• Difficulty Level : Medium
• Last Updated : 23 Jun, 2022

The diameter of a tree (sometimes called the width) is the number of nodes on the longest path between two end nodes. The diagram below shows two trees each with diameter nine, the leaves that form the ends of the longest path are shaded (note that there is more than one path in each tree of length nine, but no path longer than nine nodes). The diameter of a tree T is the largest of the following quantities:

• the diameter of T’s left subtree.
• the diameter of T’s right subtree.
• the longest path between leaves that goes through the root of T (this can be computed from the heights of the subtrees of T)

Implementation:

## C++

 `// Recursive optimized C program to find the diameter of a` `// Binary Tree` `#include ` `using` `namespace` `std;`   `// A binary tree node has data, pointer to left child` `// and a pointer to right child` `struct` `node {` `    ``int` `data;` `    ``struct` `node *left, *right;` `};`   `// function to create a new node of tree and returns pointer` `struct` `node* newNode(``int` `data);`   `// returns max of two integers` `int` `max(``int` `a, ``int` `b) { ``return` `(a > b) ? a : b; }`   `// function to Compute height of a tree.` `int` `height(``struct` `node* node);`   `// Function to get diameter of a binary tree` `int` `diameter(``struct` `node* tree)` `{` `    ``// base case where tree is empty` `    ``if` `(tree == NULL)` `        ``return` `0;`   `    ``// get the height of left and right sub-trees` `    ``int` `lheight = height(tree->left);` `    ``int` `rheight = height(tree->right);`   `    ``// get the diameter of left and right sub-trees` `    ``int` `ldiameter = diameter(tree->left);` `    ``int` `rdiameter = diameter(tree->right);`   `    ``// Return max of following three` `    ``// 1) Diameter of left subtree` `    ``// 2) Diameter of right subtree` `    ``// 3) Height of left subtree + height of right subtree + 1` `    ``return` `max(lheight + rheight + 1,` `            ``max(ldiameter, rdiameter));` `}`   `// UTILITY FUNCTIONS TO TEST diameter() FUNCTION`   `// The function Compute the "height" of a tree. Height is` `// the number f nodes along the longest path from the root` `// node down to the farthest leaf node.` `int` `height(``struct` `node* node)` `{` `    ``// base case tree is empty` `    ``if` `(node == NULL)` `        ``return` `0;`   `    ``// If tree is not empty then height = 1 + max of left` `    ``// height and right heights` `    ``return` `1 + max(height(node->left), height(node->right));` `}`   `// Helper function that allocates a new node with the` `// given data and NULL left and right pointers.` `struct` `node* newNode(``int` `data)` `{` `    ``struct` `node* node` `        ``= (``struct` `node*)``malloc``(``sizeof``(``struct` `node));` `    ``node->data = data;` `    ``node->left = NULL;` `    ``node->right = NULL;`   `    ``return` `(node);` `}`   `// Driver Code` `int` `main()` `{`   `    ``/* Constructed binary tree is` `            ``1` `            ``/ \` `        ``2     3` `        ``/ \` `    ``4     5` `    ``*/` `    ``struct` `node* root = newNode(1);` `    ``root->left = newNode(2);` `    ``root->right = newNode(3);` `    ``root->left->left = newNode(4);` `    ``root->left->right = newNode(5);`   `    ``// Function Call` `    ``cout << ``"Diameter of the given binary tree is "` `<<` `        ``diameter(root);`   `    ``return` `0;` `}`   `// This code is contributed by shivanisinghss2110`

## C

 `// Recursive optimized C program to find the diameter of a` `// Binary Tree` `#include ` `#include `   `// A binary tree node has data, pointer to left child` `// and a pointer to right child` `struct` `node {` `    ``int` `data;` `    ``struct` `node *left, *right;` `};`   `// function to create a new node of tree and returns pointer` `struct` `node* newNode(``int` `data);`   `// returns max of two integers` `int` `max(``int` `a, ``int` `b) { ``return` `(a > b) ? a : b; }`   `// function to Compute height of a tree.` `int` `height(``struct` `node* node);`   `// Function to get diameter of a binary tree` `int` `diameter(``struct` `node* tree)` `{` `    ``// base case where tree is empty` `    ``if` `(tree == NULL)` `        ``return` `0;`   `    ``// get the height of left and right sub-trees` `    ``int` `lheight = height(tree->left);` `    ``int` `rheight = height(tree->right);`   `    ``// get the diameter of left and right sub-trees` `    ``int` `ldiameter = diameter(tree->left);` `    ``int` `rdiameter = diameter(tree->right);`   `    ``// Return max of following three` `    ``// 1) Diameter of left subtree` `    ``// 2) Diameter of right subtree` `    ``// 3) Height of left subtree + height of right subtree + 1`   `    ``return` `max(lheight + rheight + 1,` `               ``max(ldiameter, rdiameter));` `}`   `// UTILITY FUNCTIONS TO TEST diameter() FUNCTION`   `//  The function Compute the "height" of a tree. Height is` `//  the number f nodes along the longest path from the root` `//   node down to the farthest leaf node.` `int` `height(``struct` `node* node)` `{` `    ``// base case tree is empty` `    ``if` `(node == NULL)` `        ``return` `0;`   `    ``// If tree is not empty then height = 1 + max of left` `    ``// height and right heights` `    ``return` `1 + max(height(node->left), height(node->right));` `}`   `// Helper function that allocates a new node with the` `// given data and NULL left and right pointers.` `struct` `node* newNode(``int` `data)` `{` `    ``struct` `node* node` `        ``= (``struct` `node*)``malloc``(``sizeof``(``struct` `node));` `    ``node->data = data;` `    ``node->left = NULL;` `    ``node->right = NULL;`   `    ``return` `(node);` `}`   `// Driver Code` `int` `main()` `{`   `    ``/* Constructed binary tree is` `              ``1` `            ``/   \` `          ``2      3` `        ``/  \` `      ``4     5` `    ``*/` `    ``struct` `node* root = newNode(1);` `    ``root->left = newNode(2);` `    ``root->right = newNode(3);` `    ``root->left->left = newNode(4);` `    ``root->left->right = newNode(5);`   `    ``// Function Call` `    ``printf``(``"Diameter of the given binary tree is %d\n"``,` `           ``diameter(root));`   `    ``return` `0;` `}`

## Java

 `// Recursive optimized Java program to find the diameter of` `// a Binary Tree`   `// Class containing left and right child of current` `// node and key value` `class` `Node {` `    ``int` `data;` `    ``Node left, right;`   `    ``public` `Node(``int` `item)` `    ``{` `        ``data = item;` `        ``left = right = ``null``;` `    ``}` `}`   `// Class to print the Diameter` `class` `BinaryTree {` `    ``Node root;`   `    ``// Method to calculate the diameter and return it to` `    ``// main` `    ``int` `diameter(Node root)` `    ``{` `        ``// base case if tree is empty` `        ``if` `(root == ``null``)` `            ``return` `0``;`   `        ``// get the height of left and right sub-trees` `        ``int` `lheight = height(root.left);` `        ``int` `rheight = height(root.right);`   `        ``// get the diameter of left and right sub-trees` `        ``int` `ldiameter = diameter(root.left);` `        ``int` `rdiameter = diameter(root.right);`   `        ``/* Return max of following three` `          ``1) Diameter of left subtree` `          ``2) Diameter of right subtree` `          ``3) Height of left subtree + height of right subtree + 1` `         ``*/` `        ``return` `Math.max(lheight + rheight + ``1``,` `                        ``Math.max(ldiameter, rdiameter));` `    ``}`   `    ``// A wrapper over diameter(Node root)` `    ``int` `diameter() { ``return` `diameter(root); }`   `    ``// The function Compute the "height" of a tree. Height` `    ``// is the number of nodes along the longest path from the` `    ``// root node down to the farthest leaf node.` `    ``static` `int` `height(Node node)` `    ``{` `        ``// base case tree is empty` `        ``if` `(node == ``null``)` `            ``return` `0``;`   `        ``// If tree is not empty then height = 1 + max of` `        ``//  left height and right heights` `        ``return` `(``1` `                ``+ Math.max(height(node.left),` `                           ``height(node.right)));` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``// creating a binary tree and entering the nodes` `        ``BinaryTree tree = ``new` `BinaryTree();` `        ``tree.root = ``new` `Node(``1``);` `        ``tree.root.left = ``new` `Node(``2``);` `        ``tree.root.right = ``new` `Node(``3``);` `        ``tree.root.left.left = ``new` `Node(``4``);` `        ``tree.root.left.right = ``new` `Node(``5``);`   `        ``// Function Call` `        ``System.out.println(` `            ``"The diameter of given binary tree is : "` `            ``+ tree.diameter());` `    ``}` `}`

## Python3

 `# Python3 program to find the diameter of binary tree`   `# A binary tree node` `class` `Node:`   `    ``# Constructor to create a new node` `    ``def` `__init__(``self``, data):` `        ``self``.data ``=` `data` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None`       `# The function Compute the "height" of a tree. Height is the ` `# number of nodes along the longest path from the root node ` `# down to the farthest leaf node.`   `def` `height(node):`   `    ``# Base Case : Tree is empty` `    ``if` `node ``is` `None``:` `        ``return` `0`   `    ``# If tree is not empty then height = 1 + max of left` `    ``# height and right heights` `    ``return` `1` `+` `max``(height(node.left), height(node.right))`   `# Function to get the diameter of a binary tree` `def` `diameter(root):`   `    ``# Base Case when tree is empty` `    ``if` `root ``is` `None``:` `        ``return` `0`   `    ``# Get the height of left and right sub-trees` `    ``lheight ``=` `height(root.left)` `    ``rheight ``=` `height(root.right)`   `    ``# Get the diameter of left and right sub-trees` `    ``ldiameter ``=` `diameter(root.left)` `    ``rdiameter ``=` `diameter(root.right)`   `    ``# Return max of the following tree:` `    ``# 1) Diameter of left subtree` `    ``# 2) Diameter of right subtree` `    ``# 3) Height of left subtree + height of right subtree +1` `    ``return` `max``(lheight ``+` `rheight ``+` `1``, ``max``(ldiameter, rdiameter))`     `# Driver Code` `"""` `Constructed binary tree is ` `            ``1` `          ``/   \` `        ``2      3` `      ``/  \` `    ``4     5` `"""`   `root ``=` `Node(``1``)` `root.left ``=` `Node(``2``)` `root.right ``=` `Node(``3``)` `root.left.left ``=` `Node(``4``)` `root.left.right ``=` `Node(``5``)`   `# Function Call` `print``(diameter(root))`   `# This code is contributed by Nikhil Kumar Singh(nickzuck_007)`

## C#

 `// Recursive optimized C# program to find the diameter of` `// a Binary Tree`   `// Class containing left and right child of current` `// node and key value` `using` `System;`   `namespace` `Tree` `{` `  ``class` `Tree` `    ``{` `        ``public` `Tree(T value)` `        ``{` `            ``this``.value = value;` `        ``}` `        ``public` `T value { ``get``; ``set``; }` `        ``public` `Tree left { ``get``; ``set``; }` `        ``public` `Tree right { ``get``; ``set``; }` `    ``}` `    `  `    ``public` `class` `TreeDiameter` `    ``{` `        ``Tree<``int``> root;` `      `  `        ``// The function Compute the "height" of a tree. Height` `        ``// is the number of nodes along the longest path from the` `        ``// root node down to the farthest leaf node.` `        ``int` `Height(Tree<``int``> node)` `        ``{` `            ``if` `(node == ``null``) ``return` `0;` `            ``return` `1 + Math.Max(Height(node.left), ` `                                ``Height(node.right));` `        ``}` `        ``int` `Diameter(Tree<``int``> root)` `        ``{` `            ``if` `(root == ``null``) ``return` `0;`   `            ``// get the height of left and right sub-trees` `            ``int` `lHeight = Height(root.left);` `            ``int` `rHeight = Height(root.right);`   `            ``// get the diameter of left and right sub-trees` `            ``int` `lDiameter = Diameter(root.left);` `            ``int` `rDiameter = Diameter(root.right);`   `          ``//  Return max of following three` `          ``//1) Diameter of left subtree` `          ``//2) Diameter of right subtree` `          ``//3) Height of left subtree + height of right subtree + 1         ` `            ``return` `Math.Max(lHeight + rHeight + 1, ` `                            ``Math.Max(lDiameter, rDiameter));` `        ``}`   `        ``// A wrapper over diameter(Node root)` `        ``int` `Diameter() { ``return` `Diameter(root); }`   `        ``// Driver Code` `        ``public` `static` `void` `Main(``string``[] args)` `        ``{` `          `  `            ``// creating a binary tree and entering the nodes` `            ``TreeDiameter tree = ``new` `TreeDiameter();` `            ``tree.root = ``new` `Tree<``int``>(1);` `            ``tree.root.left = ``new` `Tree<``int``>(2);` `            ``tree.root.right = ``new` `Tree<``int``>(3);` `            ``tree.root.left.left = ``new` `Tree<``int``>(4);` `            ``tree.root.left.right = ``new` `Tree<``int``>(5);`   `            ``Console.WriteLine(\$``"The diameter of given binary tree is : {tree.Diameter()}"``);` `        ``}` `    ``}` `}`   `// This code is contributed by krishaccot`

## Javascript

 ``

Output

`Diameter of the given binary tree is 4`

Time Complexity: O(n2)

Auxiliary Space: O(n) for call stack

Optimized implementation: The above implementation can be optimized by calculating the height in the same recursion rather than calling a height() separately. Thanks to Amar for suggesting this optimized version. This optimization reduces time complexity to O(n).

## C++

 `// Recursive optimized C++ program to find the diameter of a` `// Binary Tree` `#include ` `using` `namespace` `std;` ` `  `// A binary tree node has data, pointer to left child` `// and a pointer to right child` `struct` `node {` `    ``int` `data;` `    ``struct` `node *left, *right;` `};` ` `  `// function to create a new node of tree and returns pointer` `struct` `node* newNode(``int` `data);`   `int` `diameterOpt(``struct` `node* root, ``int``* height)` `{` `    ``// lh --> Height of left subtree` `    ``// rh --> Height of right subtree` `    ``int` `lh = 0, rh = 0;` ` `  `    ``// ldiameter  --> diameter of left subtree` `    ``// rdiameter  --> Diameter of right subtree ` `    ``int` `ldiameter = 0, rdiameter = 0;` ` `  `    ``if` `(root == NULL) {` `        ``*height = 0;` `        ``return` `0; ``// diameter is also 0 ` `    ``}` ` `  `    ``// Get the heights of left and right subtrees in lh and` `    ``// rh And store the returned values in ldiameter and` `    ``// ldiameter` `    ``ldiameter = diameterOpt(root->left, &lh);` `    ``rdiameter = diameterOpt(root->right, &rh);` ` `  `    ``// Height of current node is max of heights of left and` `    ``// right subtrees plus 1` `    ``*height = max(lh, rh) + 1;` ` `  `    ``return` `max(lh + rh , max(ldiameter, rdiameter));` `}`   `// Helper function that allocates a new node with the` `// given data and NULL left and right pointers.` `struct` `node* newNode(``int` `data)` `{` `    ``struct` `node* node` `        ``= (``struct` `node*)``malloc``(``sizeof``(``struct` `node));` `    ``node->data = data;` `    ``node->left = NULL;` `    ``node->right = NULL;` ` `  `    ``return` `(node);` `}`   `// Driver Code` `int` `main()` `{` ` `  `    ``/* Constructed binary tree is` `            ``1` `            ``/ \` `        ``2     3` `        ``/ \` `    ``4     5` `    ``*/` `    ``struct` `node* root = newNode(1);` `    ``root->left = newNode(2);` `    ``root->right = newNode(3);` `    ``root->left->left = newNode(4);` `    ``root->left->right = newNode(5);` `    `  `    ``int` `height = 0;` `    ``// Function Call` `    ``cout << ``"Diameter of the given binary tree is "` `<< diameterOpt(root, &height);` ` `  `    ``return` `0;` `}`   `// This code is contributed by probinsah.`

## C

 `// Recursive C program to find the diameter of a` `// Binary Tree` `#include `   `// the second parameter is to store the height of tree.` `// Initially, we need to pass a pointer to a location with` `// value as 0. So, function should be used as follows:`   `// int height = 0;` `// struct node *root = SomeFunctionToMakeTree();` `// int diameter = diameterOpt(root, &height);` `int` `diameterOpt(``struct` `node* root, ``int``* height)` `{` `    ``// lh --> Height of left subtree` `    ``// rh --> Height of right subtree` `    ``int` `lh = 0, rh = 0;`   `    ``// ldiameter  --> diameter of left subtree` `    ``// rdiameter  --> Diameter of right subtree ` `    ``int` `ldiameter = 0, rdiameter = 0;`   `    ``if` `(root == NULL) {` `        ``*height = 0;` `        ``return` `0; ``// diameter is also 0 ` `    ``}`   `    ``// Get the heights of left and right subtrees in lh and` `    ``// rh And store the returned values in ldiameter and` `    ``// ldiameter` `    ``ldiameter = diameterOpt(root->left, &lh);` `    ``rdiameter = diameterOpt(root->right, &rh);`   `    ``// Height of current node is max of heights of left and` `    ``// right subtrees plus 1` `    ``*height = max(lh, rh) + 1;`   `    ``return` `max(lh + rh, max(ldiameter, rdiameter));` `}`

## Java

 `// Recursive Java program to find the diameter of a` `// Binary Tree`   `// Class containing left and right child of current` `// node and key value` `class` `Node {` `    ``int` `data;` `    ``Node left, right;`   `    ``public` `Node(``int` `item)` `    ``{` `        ``data = item;` `        ``left = right = ``null``;` `    ``}` `}`   `// A utility class to pass height object` `class` `Height {` `    ``int` `h;` `}`   `// Class to print the Diameter` `class` `BinaryTree {` `    ``Node root;`   `    ``// define height =0 globally and  call` `    ``// diameterOpt(root,height) from main` `    ``int` `diameterOpt(Node root, Height height)` `    ``{` `        ``// lh --> Height of left subtree` `        ``// rh --> Height of right subtree` `        ``Height lh = ``new` `Height(), rh = ``new` `Height();`   `        ``if` `(root == ``null``) {` `            ``height.h = ``0``;` `            ``return` `0``; ``// diameter is also 0` `        ``}` `/*` `        ``ldiameter  --> diameter of left subtree` `        ``rdiameter  --> Diameter of right subtree` `        ``Get the heights of left and right subtrees in lh and rh.` `        ``And store the returned values in ldiameter and ldiameter*/` `          ``int` `ldiameter = diameterOpt(root.left, lh);` `        ``int` `rdiameter = diameterOpt(root.right, rh);`   `        ``// Height of current node is max of heights of left` `        ``// and right subtrees plus 1` `        ``height.h = Math.max(lh.h, rh.h) + ``1``;`   `        ``return` `Math.max(lh.h + rh.h ,` `                        ``Math.max(ldiameter, rdiameter));` `    ``}`   `    ``// A wrapper over diameter(Node root)` `    ``int` `diameter()` `    ``{` `        ``Height height = ``new` `Height();` `        ``return` `diameterOpt(root, height);` `    ``}`   `    ``// The function Compute the "height" of a tree. Height` `    ``// is` `    ``//  the number f nodes along the longest path from the` `    ``//  root node down to the farthest leaf node.` `    ``static` `int` `height(Node node)` `    ``{` `        ``// base case tree is empty` `        ``if` `(node == ``null``)` `            ``return` `0``;`   `        ``// If tree is not empty then height = 1 + max of` `        ``// left height and right heights` `        ``return` `(``1` `                ``+ Math.max(height(node.left),` `                           ``height(node.right)));` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``// creating a binary tree and entering the nodes` `        ``BinaryTree tree = ``new` `BinaryTree();` `        ``tree.root = ``new` `Node(``1``);` `        ``tree.root.left = ``new` `Node(``2``);` `        ``tree.root.right = ``new` `Node(``3``);` `        ``tree.root.left.left = ``new` `Node(``4``);` `        ``tree.root.left.right = ``new` `Node(``5``);`   `        ``// Function Call` `        ``System.out.println(` `            ``"The diameter of given binary tree is : "` `            ``+ tree.diameter());` `    ``}` `}`

## Python3

 `# Python3 program to find the diameter of a binary tree` `# A binary tree Node` `class` `Node:`   `    ``# Constructor to create a new Node` `    ``def` `__init__(``self``, data):` `        ``self``.data ``=` `data` `        ``self``.left ``=` `self``.right ``=` `None`   `# utility class to pass height object`   `class` `Height:` `    ``def` `__init(``self``):` `        ``self``.h ``=` `0`   `# Optimised recursive function to find diameter` `# of binary tree`     `def` `diameterOpt(root, height):`   `    ``# to store height of left and right subtree` `    ``lh ``=` `Height()` `    ``rh ``=` `Height()`   `    ``# base condition- when binary tree is empty` `    ``if` `root ``is` `None``:` `        ``height.h ``=` `0` `        ``return` `0`   `    `  `    ``# ldiameter --> diameter of left subtree` `    ``# rdiameter  --> diameter of right subtree` `    `  `    ``# height of left subtree and right subtree is obtained from lh and rh` `    ``# and returned value of function is stored in ldiameter and rdiameter` `    `  `    ``ldiameter ``=` `diameterOpt(root.left, lh)` `    ``rdiameter ``=` `diameterOpt(root.right, rh)`   `    ``# height of tree will be max of left subtree` `    ``# height and right subtree height plus1`   `    ``height.h ``=` `max``(lh.h, rh.h) ``+` `1`   `    ``# return maximum of the following` `    ``# 1)left diameter` `    ``# 2)right diameter` `    ``# 3)left height + right height + 1` `    ``return` `max``(lh.h ``+` `rh.h, ``max``(ldiameter, rdiameter))`   `# function to calculate diameter of binary tree` `def` `diameter(root):` `    ``height ``=` `Height()` `    ``return` `diameterOpt(root, height)`     `# Driver Code ` `root ``=` `Node(``1``)` `root.left ``=` `Node(``2``)` `root.right ``=` `Node(``3``)` `root.left.left ``=` `Node(``4``)` `root.left.right ``=` `Node(``5``)`   `"""` `Constructed binary tree is ` `            ``1` `          ``/   \` `        ``2      3` `      ``/  \` `    ``4     5` `"""`   `# Function Call` `print``(diameter(root))`   `# This code is contributed by Shweta Singh(shweta44)`

## C#

 `// Recursive C# program to find the diameter of a` `// Binary Tree` `using` `System;` `using` `System.Collections.Generic;`   `// Class containing left and right child of current` `// node and key value` `class` `Node` `{` `    ``public` `int` `data;` `    ``public` `Node left, right;` ` `  `    ``public` `Node(``int` `item)` `    ``{` `        ``data = item;` `        ``left = right = ``null``;` `    ``}` `}` ` `  `// A utility class to pass height object` `class` `Height {` `    ``public` `int` `h;` `}`   `// Class to print the Diameter` `class` `BinaryTree {` `    ``public` `Node root;` ` `  `    ``// define height =0 globally and  call` `    ``// diameterOpt(root,height) from main` `    ``public` `int` `diameterOpt(Node root, Height height)` `    ``{` `        ``// lh --> Height of left subtree` `        ``// rh --> Height of right subtree` `        ``Height lh = ``new` `Height(), rh = ``new` `Height();` ` `  `        ``if` `(root == ``null``) {` `            ``height.h = 0;` `            ``return` `0; ``// diameter is also 0` `        ``}` ` `  `        ``// ldiameter  --> diameter of left subtree` `        ``// rdiameter  --> Diameter of right subtree` `        ``// Get the heights of left and right subtrees in lh` `        ``/*and rh And store the returned values in ldiameter` `                ``and ldiameter */` `        ``int` `ldiameter = diameterOpt(root.left, lh);` `        ``int` `rdiameter = diameterOpt(root.right, rh);` ` `  `        ``// Height of current node is max of heights of left` `        ``// and right subtrees plus 1` `        ``height.h = Math.Max(lh.h, rh.h) + 1;` ` `  `        ``return` `Math.Max(lh.h + rh.h,` `                        ``Math.Max(ldiameter, rdiameter));` `    ``}` ` `  `    ``// A wrapper over diameter(Node root)` `    ``public` `int` `diameter()` `    ``{` `        ``Height height = ``new` `Height();` `        ``return` `diameterOpt(root, height);` `    ``}` ` `  `    ``// The function Compute the "height" of a tree. Height` `    ``// is` `    ``//  the number f nodes along the longest path from the` `    ``//  root node down to the farthest leaf node.` `    ``public` `int` `height(Node node)` `    ``{` `        ``// base case tree is empty` `        ``if` `(node == ``null``)` `            ``return` `0;` ` `  `        ``// If tree is not empty then height = 1 + max of` `        ``// left height and right heights` `        ``return` `(1` `                ``+ Math.Max(height(node.left),` `                           ``height(node.right)));` `    ``}` ` `  `    ``// Driver Code` `    ``static` `void` `Main()` `    ``{` `      `  `        ``// creating a binary tree and entering the nodes` `        ``BinaryTree tree = ``new` `BinaryTree();` `        ``tree.root = ``new` `Node(1);` `        ``tree.root.left = ``new` `Node(2);` `        ``tree.root.right = ``new` `Node(3);` `        ``tree.root.left.left = ``new` `Node(4);` `        ``tree.root.left.right = ``new` `Node(5);` ` `  `        ``// Function Call` `        ``Console.Write(``"The diameter of given binary tree is : "` `+ tree.diameter());` `    ``}` `}`   `// This code is contributed by divyesh072019.`

## Javascript

 ``

Output

`Diameter of the given binary tree is 3`

Time Complexity: O(n)

Auxiliary Space: O(n) due to recursive calls.

References:
http://www.cs.duke.edu/courses/spring00/cps100/assign/trees/diameter.html
Please write comments if you find any of the above codes/algorithms incorrect, or find other ways to solve the same problem.

My Personal Notes arrow_drop_up
Recommended Articles
Page :