Skip to content
Related Articles

Related Articles

Determine Period Index and Column for DataFrame in Pandas

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 11 Jun, 2021

In Pandas to determine Period Index and Column for Data Frame, we will use the pandas.period_range() method. It is one of the general functions in Pandas that is used to return a fixed frequency PeriodIndex, with day (calendar) as the default frequency.

Syntax: pandas.to_numeric(arg, errors=’raise’, downcast=None)

Parameters:
start : Left bound for generating periods
end : Right bound for generating periods
periods : Number of periods to generate
freq : Frequency alias
name : Name of the resulting PeriodIndex

Returns: PeriodIndex

Example 1:

Python3




import pandas as pd
 
 
 
course = ["DBMS", "DSA", "OOPS",
          "System Design", "CN", ]
 
# pass the period and starting index
webinar_date = pd.period_range('2020-08-15', periods=5)
 
# Determine Period Index and Column
# for DataFrame
df = pd.DataFrame(course, index=webinar_date, columns=['Course'])
 
df


 

 

Output:

 

 

Example 2:

 

Python3




import pandas as pd
 
day = ["Sun", "Mon", "Tue",
       "Wed", "Thurs", "Fri", "Sat"]
 
# pass the period and starting index
daycode = pd.period_range('2020-08-15', periods=7)
 
# Determine Period Index and Column for DataFrame
df = pd.DataFrame(day, index=daycode, columns=['day'])
 
df


 

 

Output:

 

 

Example 3:

 

Python3




import pandas as pd
 
Team = ["Ind", "Pak", "Aus"]
 
# pass the period and starting index
match_date = pd.period_range('2020-08-01', periods=3)
 
# Determine Period Index and Column for DataFrame
df = pd.DataFrame(Team, index=match_date, columns=['Team'])
 
df


 

 

Output:

 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!