Determinant of N x N matrix using multi-threading
Given a matrix of N x N, task is to find the determinant of the matrix using multi-threading.
Examples :
Input : mat = {{0, 4, 0, -3}, {1, 1, 5, 2}, {1, -2, 0, 6}, { 3, 0, 0, 1}} Output : -250 Input : mat = {{1, 0, 2, -1}, {3, 0, 0, 5}, {2, 1, 4, -3}, {1, 0, 5, 0}} Output: 30
Approach :
It is known that finding the determinant of a matrix can be very costly in the amount of time it takes. So, computing things parallelly may lead to a comparatively less costly program. A code can be parallelized using threads, which is light weight process and divides a single flow program into a program with multiple flows. As for finding the determinant of a matrix, first find the determinant of the submatrices of the matrix, distribute the task of finding the determinant of submatrices to the threads, and these threads will run parallelly resulting in less time execution time than the sequential method.
Note: The code is Linux specific.
C++
// CPP program for finding determinant matrix // with parallelizing the code #include <iostream> #include <vector> #include <pthread.h> #define size 4 using namespace std; // matrix whose determinant is required int mat[][size] = { { 0, 4, 0, -3 }, { 1, 1, 5, 2 }, { 1, -2, 0, 6 }, { 3, 0, 0, 1 } }; int det[size]; // declaring variable for storing thread id pthread_t thread [size]; // function for finding determinant int determinant(vector<vector< int > > mat2, int s) { if (s == 2) { // if size of matrix is 2X2 // then returning the determinant return mat2[0][0] * mat2[1][1] - mat2[0][1] * mat2[1][0]; } else { // else dividing the matrix in smaller part. vector<vector< int > > mat1(s - 1), mat3(s - 1), mat4(s - 1); int k, l, m, i, j; for (i = 0; i < s - 1; i++) { mat1[i] = vector< int >(s - 1); mat3[i] = vector< int >(s - 1); mat4[i] = vector< int >(s - 1); } for (i = 1; i < s; i++) { k = 0; l = 0; m = 0; for (j = 0; j < s; j++) { if (j != 0) { mat1[i - 1][k] = mat2[i][j]; k++; } if (j != 1) { mat3[i - 1][l] = mat2[i][j]; l++; } if (j != 2) { mat4[i - 1][m] = mat2[i][j]; m++; } } } return mat2[0][0] * determinant(mat1, s - 1) - mat2[0][1] * determinant(mat3, s - 1) + mat2[0][2] * determinant(mat4, s - 1); } } // function for finding determinant using first row // with each element of row a thread is associated. void * createTd( void * arg) { int *ar = ( int *)arg, i, j, k; vector<vector< int > > mat2(size - 1); for (i = 0; i < size - 1; i++) mat2[i] = vector< int >(size - 1); // extracting the matrix smaller by size one. // for finding the determinant. for (i = 1; i < size; i++) { k = 0; for (j = 0; j < size; j++) { if (j != (*ar)) { mat2[i - 1][k] = mat[i][j]; k++; } } } // calling determinant function det[*ar] = det[*ar] * determinant(mat2, size - 1); } // driver function int main() { int i, j, detfin = 0; int p[size]; // storing the first row in a array // for later multiplying with the determinant // of smaller matrix for (i = 0; i < size; i++) det[i] = mat[0][i]; // creating thread for (i = 0; i < size; i++) { p[i] = i; pthread_create(& thread [i], NULL, &createTd, ( void *)&p[i]); } // waiting for all the threads to join pthread_join( thread [0], NULL); pthread_join( thread [1], NULL); pthread_join( thread [2], NULL); pthread_join( thread [3], NULL); for (i = 0; i < size; i++) { if (i % 2 == 0) detfin += det[i]; else detfin -= det[i]; } cout << detfin << endl; return 0; } |
Python3
import threading size = 4 # matrix whose determinant is required mat = [[ 0 , 4 , 0 , - 3 ], [ 1 , 1 , 5 , 2 ], [ 1 , - 2 , 0 , 6 ], [ 3 , 0 , 0 , 1 ]] det = [ 0 ] * size # function for finding determinant def determinant(mat2, s): if s = = 2 : # if size of matrix is 2x2 # then returning the determinant return mat2[ 0 ][ 0 ] * mat2[ 1 ][ 1 ] - mat2[ 0 ][ 1 ] * mat2[ 1 ][ 0 ] else : # else dividing the matrix in smaller parts mat1 = [[ 0 ] * (s - 1 ) for _ in range (s - 1 )] mat3 = [[ 0 ] * (s - 1 ) for _ in range (s - 1 )] mat4 = [[ 0 ] * (s - 1 ) for _ in range (s - 1 )] for i in range ( 1 , s): k, l, m = 0 , 0 , 0 for j in range (s): if j ! = 0 : mat1[i - 1 ][k] = mat2[i][j] k + = 1 if j ! = 1 : mat3[i - 1 ][l] = mat2[i][j] l + = 1 if j ! = 2 : mat4[i - 1 ][m] = mat2[i][j] m + = 1 return (mat2[ 0 ][ 0 ] * determinant(mat1, s - 1 ) - mat2[ 0 ][ 1 ] * determinant(mat3, s - 1 ) + mat2[ 0 ][ 2 ] * determinant(mat4, s - 1 )) # function for finding determinant using first row # with each element of row a thread is associated def createTd(ar): global det mat2 = [[ 0 ] * (size - 1 ) for _ in range (size - 1 )] # extracting the matrix smaller by size one # for finding the determinant for i in range ( 1 , size): k = 0 for j in range (size): if j ! = ar: mat2[i - 1 ][k] = mat[i][j] k + = 1 # calling determinant function det[ar] = det[ar] * determinant(mat2, size - 1 ) # driver function if __name__ = = "__main__" : threads = [] detfin = 0 # storing the first row in an array # for later multiplying with the determinant # of smaller matrix for i in range (size): det[i] = mat[ 0 ][i] # creating threads for i in range (size): t = threading.Thread(target = createTd, args = (i,)) t.start() threads.append(t) # waiting for all the threads to join for t in threads: t.join() for i in range (size): if i % 2 = = 0 : detfin + = det[i] else : detfin - = det[i] print (detfin) |
Output:
-250
Please Login to comment...