Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Derivatives of Polynomial Functions

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Derivatives are used in Calculus to measure the rate of change of a function with respect to a variable. The use of derivatives is very important in Mathematics. It is used to solve many problems in mathematics like to find out maxima or minima of a function, slope of a function, to tell whether a function is increasing or decreasing. If a function is written as y = f(x) and we want to find the derivative of this function then it will be written as dy/dx and can be pronounced as the rate of change of y with respect to x. 

The derivative of a polynomial function

To calculate the derivative of a polynomial function, first, you should know the product rule of derivatives and the basic rule of the derivative.

Product rule of derivative

\frac{\partial (x^{n})}{\partial x} = n\times x^{n-1}

(Here n can be either positive or negative value)

Understand in this way: The old power of the variable is multiplied with the coefficient of the variable and the new power of the variable is decreased by 1 from the old power. 

Example: Find the derivative of x3?

Solution:

Let y = x3

=> \frac{\partial y}{\partial x} = 3\times x^{3-1} = 3x^2

Some basic rules of derivative

  • If y = c f(x)

\frac{\partial y}{\partial x} = c\frac{\partial (f(x))}{\partial x}

  • If y = c

\frac{\partial y}{\partial x} = 0

  •  If \ y= f_{1}(x)\pm  f_{1}(x)

\frac{\partial y}{\partial x} = \frac{\partial (f_{1}(x))}{\partial x}\pm \frac{\partial (f_{1}(x))}{\partial x}\\

Example 1: Find the derivative of 4x3 + 7x?

Solution:

Let y = 4x3 + 7x

\frac{\partial y}{\partial x} = \frac{\partial (4x^{3})}{\partial x}+\frac{\partial (7x)}{\partial x} \\ \frac{\partial y}{\partial x} = 4\times 3\times x^{2} + 7 = 12x^2 + 7

Example 2: Find the derivative of 3x2 – 7?

Solution:

Let y = 3x2 – 7

\frac{\partial y}{\partial x}=6x

Some more examples on derivative of polynomials

Example 1: Find the derivative of \frac{1}{x^{7}}?

Solution:

Let \ y=\frac{1}{x^{7}}\\

This can be written as 

y = x−7

\frac{\partial y}{\partial x} = (-7)\times x^{-8}

Example 2: Find the derivative of 7x5 + x3 − x?

Solution:

Let y = 7x5 + x3 − x

\frac{\partial y}{\partial x}=35x^{4}+3x^{2}-1

Example 3: Find the derivative of (x + 5)2 + 6x3 − 4?

Solution:

Let y = (x + 5)2 + 6x3 − 4

\frac{\partial y}{\partial x} = 2(x+5)+18x^{2}

Example 4: Find the derivative of 6x3 + (6x + 5)2 − 8x?

Solution:

Let y = 6x3 + (6x + 5)2 − 8x

\frac{\partial y}{\partial x} = 18x^{2}+2(6x+5)(6)-8\\ \frac{\partial y}{\partial x} =18x^{2}+12(6x+5)-8

Example 5: Find the derivative of \frac{1}{(2x+8)^{7}}?

Solution:

Let \ y=\frac{1}{(2x+8)^{7}}\\ y=(2x+8)^{-7}\\ \frac{\partial y}{\partial x}=(-7)(2x+8)^{-8}(2)\\ \frac{\partial y}{\partial x}=(-14)(2x+8)^{-8}


My Personal Notes arrow_drop_up
Last Updated : 15 Dec, 2020
Like Article
Save Article
Similar Reads
Related Tutorials