Depth of an N-Ary tree
Given an N-Ary tree, find depth of the tree. An N-Ary tree is a tree in which nodes can have at most N children.
Algorithm
Here is the algorithm for finding the depth of an N-Ary tree:
1)Define a struct for the nodes of the N-ary tree with a key and a vector of pointers to its child nodes. 2)Create a utility function to create a new node with the given key. 3)Define a function depthOfTree that takes in a pointer to a Node and returns the depth of the tree. 4)If the pointer to the Node is null, return 0. 5)Initialize a variable maxdepth to 0. 6)Iterate through the vector of child nodes of the current Node and for each child node, recursively call depthOfTree function on the child and find the maximum depth. 7)Update the maxdepth variable to be the maximum of the current maxdepth and the depth of the child node. 8)Return the maxdepth plus 1 as the depth of the tree. 9)In the main function, create an N-ary tree and call depthOfTree function on the root node of the tree to get the depth. 10)Print the depth of the tree.
Examples:
- Example 1:
- Example 2:
N-Ary tree can be traversed just like a normal tree. We just have to consider all childs of a given node and recursively call that function on every node.
Implementation:
C++
// C++ program to find the height of // an N-ary tree #include <bits/stdc++.h> using namespace std; // Structure of a node of an n-ary tree struct Node { char key; vector<Node *> child; }; // Utility function to create a new tree node Node *newNode( int key) { Node *temp = new Node; temp->key = key; return temp; } // Function that will return the depth // of the tree int depthOfTree( struct Node *ptr) { // Base case if (!ptr) return 0; // Check for all children and find // the maximum depth int maxdepth = 0; for (vector<Node*>::iterator it = ptr->child.begin(); it != ptr->child.end(); it++) maxdepth = max(maxdepth, depthOfTree(*it)); return maxdepth + 1 ; } // Driver program int main() { /* Let us create below tree * A * / / \ \ * B F D E * / \ | /|\ * K J G C H I * /\ \ * N M L */ Node *root = newNode( 'A' ); (root->child).push_back(newNode( 'B' )); (root->child).push_back(newNode( 'F' )); (root->child).push_back(newNode( 'D' )); (root->child).push_back(newNode( 'E' )); (root->child[0]->child).push_back(newNode( 'K' )); (root->child[0]->child).push_back(newNode( 'J' )); (root->child[2]->child).push_back(newNode( 'G' )); (root->child[3]->child).push_back(newNode( 'C' )); (root->child[3]->child).push_back(newNode( 'H' )); (root->child[3]->child).push_back(newNode( 'I' )); (root->child[0]->child[0]->child).push_back(newNode( 'N' )); (root->child[0]->child[0]->child).push_back(newNode( 'M' )); (root->child[3]->child[2]->child).push_back(newNode( 'L' )); cout << depthOfTree(root) << endl; return 0; } |
Java
// Java program to find the height of // an N-ary tree import java.util.*; class GFG { // Structure of a node of an n-ary tree static class Node { char key; Vector<Node > child; }; // Utility function to create a new tree node static Node newNode( int key) { Node temp = new Node(); temp.key = ( char ) key; temp.child = new Vector<Node>(); return temp; } // Function that will return the depth // of the tree static int depthOfTree(Node ptr) { // Base case if (ptr == null ) return 0 ; // Check for all children and find // the maximum depth int maxdepth = 0 ; for (Node it : ptr.child) maxdepth = Math.max(maxdepth, depthOfTree(it)); return maxdepth + 1 ; } // Driver Code public static void main(String[] args) { /* Let us create below tree * A * / / \ \ * B F D E * / \ | /|\ * K J G C H I * /\ \ * N M L */ Node root = newNode( 'A' ); (root.child).add(newNode( 'B' )); (root.child).add(newNode( 'F' )); (root.child).add(newNode( 'D' )); (root.child).add(newNode( 'E' )); (root.child.get( 0 ).child).add(newNode( 'K' )); (root.child.get( 0 ).child).add(newNode( 'J' )); (root.child.get( 2 ).child).add(newNode( 'G' )); (root.child.get( 3 ).child).add(newNode( 'C' )); (root.child.get( 3 ).child).add(newNode( 'H' )); (root.child.get( 3 ).child).add(newNode( 'I' )); (root.child.get( 0 ).child.get( 0 ).child).add(newNode( 'N' )); (root.child.get( 0 ).child.get( 0 ).child).add(newNode( 'M' )); (root.child.get( 3 ).child.get( 2 ).child).add(newNode( 'L' )); System.out.print(depthOfTree(root) + "\n" ); } } // This code is contributed by Rajput-Ji |
Python3
# Python program to find the height of # an N-ary tree # Structure of a node of an n-ary tree class Node: def __init__( self , key): self .key = key self .child = [] # Utility function to create a new tree node def new_node(key): temp = Node(key) return temp # Function that will return the depth # of the tree def depth_of_tree(ptr): # Base case if ptr is None : return 0 # Check for all children and find # the maximum depth maxdepth = 0 for child in ptr.child: maxdepth = max (maxdepth, depth_of_tree(child)) return maxdepth + 1 # Driver program if __name__ = = '__main__' : """ Let us create below tree A / / \ \ B F D E / \ | /|\ K J G C H I /\ \ N M L """ root = new_node( 'A' ) root.child.extend([new_node( 'B' ), new_node( 'F' ), new_node( 'D' ), new_node( 'E' )]) root.child[ 0 ].child.extend([new_node( 'K' ), new_node( 'J' )]) root.child[ 2 ].child.append(new_node( 'G' )) root.child[ 3 ].child.extend([new_node( 'C' ), new_node( 'H' ), new_node( 'I' )]) root.child[ 0 ].child[ 0 ].child.extend([new_node( 'N' ), new_node( 'M' )]) root.child[ 3 ].child[ 2 ].child.append(new_node( 'L' )) print (depth_of_tree(root)) |
C#
// C# program to find the height of // an N-ary tree using System; using System.Collections.Generic; class GFG { // Structure of a node of an n-ary tree public class Node { public char key; public List<Node > child; }; // Utility function to create a new tree node static Node newNode( int key) { Node temp = new Node(); temp.key = ( char ) key; temp.child = new List<Node>(); return temp; } // Function that will return the depth // of the tree static int depthOfTree(Node ptr) { // Base case if (ptr == null ) return 0; // Check for all children and find // the maximum depth int maxdepth = 0; foreach (Node it in ptr.child) maxdepth = Math.Max(maxdepth, depthOfTree(it)); return maxdepth + 1 ; } // Driver Code public static void Main(String[] args) { /* Let us create below tree * A * / / \ \ * B F D E * / \ | /|\ * K J G C H I * /\ \ * N M L */ Node root = newNode( 'A' ); (root.child).Add(newNode( 'B' )); (root.child).Add(newNode( 'F' )); (root.child).Add(newNode( 'D' )); (root.child).Add(newNode( 'E' )); (root.child[0].child).Add(newNode( 'K' )); (root.child[0].child).Add(newNode( 'J' )); (root.child[2].child).Add(newNode( 'G' )); (root.child[3].child).Add(newNode( 'C' )); (root.child[3].child).Add(newNode( 'H' )); (root.child[3].child).Add(newNode( 'I' )); (root.child[0].child[0].child).Add(newNode( 'N' )); (root.child[0].child[0].child).Add(newNode( 'M' )); (root.child[3].child[2].child).Add(newNode( 'L' )); Console.Write(depthOfTree(root) + "\n" ); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program to find the height of // an N-ary tree // Structure of a node of an n-ary tree class Node { constructor() { this .key = 0; this .child = []; } }; // Utility function to create a new tree node function newNode(key) { var temp = new Node(); temp.key = key; temp.child = []; return temp; } // Function that will return the depth // of the tree function depthOfTree(ptr) { // Base case if (ptr == null ) return 0; // Check for all children and find // the maximum depth var maxdepth = 0; for ( var it of ptr.child) maxdepth = Math.max(maxdepth, depthOfTree(it)); return maxdepth + 1 ; } // Driver Code /* Let us create below tree * A * / / \ \ * B F D E * / \ | /|\ * K J G C H I * /\ \ * N M L */ var root = newNode( 'A' ); (root.child).push(newNode( 'B' )); (root.child).push(newNode( 'F' )); (root.child).push(newNode( 'D' )); (root.child).push(newNode( 'E' )); (root.child[0].child).push(newNode( 'K' )); (root.child[0].child).push(newNode( 'J' )); (root.child[2].child).push(newNode( 'G' )); (root.child[3].child).push(newNode( 'C' )); (root.child[3].child).push(newNode( 'H' )); (root.child[3].child).push(newNode( 'I' )); (root.child[0].child[0].child).push(newNode( 'N' )); (root.child[0].child[0].child).push(newNode( 'M' )); (root.child[3].child[2].child).push(newNode( 'L' )); document.write(depthOfTree(root) + "<br>" ); </script> |
Output
4
Time complexity: O(n)
Auxiliary Space: O(n)
This article is contributed by Shubham Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...