C# Program to check if strings are rotations of each other or not
Given a string s1 and a string s2, write a snippet to say whether s2 is a rotation of s1? (eg given s1 = ABCD and s2 = CDAB, return true, given s1 = ABCD, and s2 = ACBD , return false) Algorithm: areRotations(str1, str2)
1. Create a temp string and store concatenation of str1 to str1 in temp. temp = str1.str1 2. If str2 is a substring of temp then str1 and str2 are rotations of each other. Example: str1 = "ABACD" str2 = "CDABA" temp = str1.str1 = "ABACDABACD" Since str2 is a substring of temp, str1 and str2 are rotations of each other.
C#
// C# program to check if two given strings // are rotations of each other using System; class GFG { /* Function checks if passed strings (str1 and str2) are rotations of each other */ static bool areRotations(String str1, String str2) { // There lengths must be same and // str2 must be a substring of // str1 concatenated with str1. return (str1.Length == str2.Length ) && ((str1 + str1).IndexOf(str2) != -1); } // Driver method public static void Main () { String str1 = "FGABCDE" ; String str2 = "ABCDEFG" ; if (areRotations(str1, str2)) Console.Write( "Strings are" + " rotation s of each other" ); else Console.Write( "Strings are " + "not rotations of each other" ); } } // This code is contributed by nitin mittal. |
Output:
Strings are rotations of each other
Time Complexity: O(n*n), where n is the length of the string.
Auxiliary Space: O(n)
Library Functions Used: strstr: strstr finds a sub-string within a string. Prototype: char * strstr(const char *s1, const char *s2); See http://www.lix.polytechnique.fr/Labo/Leo.Liberti/public/computing/prog/c/C/MAN/strstr.htm for more details strcat: strncat concatenate two strings Prototype: char *strcat(char *dest, const char *src); See http://www.lix.polytechnique.fr/Labo/Leo.Liberti/public/computing/prog/c/C/MAN/strcat.htm for more details Time Complexity: Time complexity of this problem depends on the implementation of strstr function. If implementation of strstr is done using KMP matcher then complexity of the above program is (-)(n1 + n2) where n1 and n2 are lengths of strings. KMP matcher takes (-)(n) time to find a substring in a string of length n where length of substring is assumed to be smaller than the string. Please refer complete article on A Program to check if strings are rotations of each other or not for more details!
Please Login to comment...