Skip to content
Related Articles

Related Articles

Create Breakout Game using Python

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 04 Jul, 2022
View Discussion
Improve Article
Save Article

In this article we will build a clone of a famous game, ‘Breakout’. We will build this game using one of Python’s in-built libraries, Turtle.

Requirements

  • An IDE like PyCharm.
  • Basics of Python
  • Basic knowledge of Python-Turtle.
  • Willingness to learn.

Project Structure

We want to keep the programming simple. The best way to do that is to break down the problem into simpler tasks and achieve them one by one. We achieve this using Object-Oriented Programming. This will keep our components independent from each other, which makes it easy to work with them.

 

Stepwise Implementation

Step 1: Create a Window with a black background colour:

Here we simply import turtle and create an object from its Screen class to control what happens with the program window. We give it to size, colour, and title to get a blank black screen. 

main.py

Python3




import turtle as tr
 
screen = tr.Screen()
screen.setup(width=1200, height=600)
screen.bgcolor('black')
screen.title('Breakout')
 
tr.mainloop()


Step 2: Creating the Paddle:

The first thing to do is import the turtle library. Decide on the distance that the paddle will move on each movement. We create the class for the paddle, inherit the Turtle class and then give our paddle required properties, which include its shape, size, and colour. We don’t want it to draw, thus we use the penup method. Then we make it go to the lowest part of the screen and in middle. Our window is 600 in width. Since each turtle screen is an XY plane, with origin in the centre, the lowest point is -300. By default, the dimensions of a turtle object are 20 X 20. Since we only stretched its length, the width remains unaffected. We place our turtle 20 pixels above the lowest point so that it remains visible, Otherwise, half of it will remain hidden. We also need it to move, thus we define two methods to make it move left and right. Since by default turtle is facing the right direction, it basically will move forward and backwards.

paddle.py

Python3




from turtle import Turtle
 
MOVE_DIST = 70
 
class Paddle(Turtle):
    def __init__(self):
        super().__init__()
        self.color('steel blue')
        self.shape('square')
        self.penup()
        self.shapesize(stretch_wid=1, stretch_len=10)
        self.goto(x=0, y=-280)
 
    def move_left(self):
        self.backward(MOVE_DIST)
 
    def move_right(self):
        self.forward(MOVE_DIST)


 

Now, Import the class for the paddle and create an object from it. We use listen() method of screen object that makes our program react to key presses. Then, using onkey() method, we define which keys it needs to listen to, which are the left and right arrow keys. For which we move our turtle backwards and forward respectively. Here we are also using two methods of screen object, tracer() and update(). We control the animations inside the window of our program. By passing zero to tracer we turn it off, by using update we turn it on. Because of these methods we directly see the paddle at the bottom of the screen. If we don’t use them, we see a paddle created in the centre of the window, which then moves to the bottom.

main.py

Python3




import turtle as tr
from paddle import Paddle
 
screen = tr.Screen()
screen.setup(width=1200, height=600)
screen.bgcolor('black')
screen.title('Breakout')
screen.tracer(0)
 
paddle = Paddle()
 
screen.listen()
screen.onkey(key='Left', fun=paddle.move_left)
screen.onkey(key='Right', fun=paddle.move_right)
 
screen.update()
 
tr.mainloop()


Step 3: Creating our Ball:

Similar to paddles, we inherit Turtle class and create a ball which is just a turtle with a circular shape. We don’t want it to draw either, so again we use penup. The first method we define is to make it move. Since our ball will be moving in the XY plane, we make increase its x and y coordinates by the same amount at the same time. This move method will be called inside our main.py inside a loop because of which we see a ball that is always moving. Then we create a method to make it change its direction when it collides with a wall, brick, or paddle, which bounces it off. Sometimes only the sideways directions need to be changed, sometimes vertical, and sometimes both. Thus we have two if statements. To make the direction change, simply make the moving distance negative, for the required coordinate. At last, we have the reset method, which makes our ball go back to where it started. We want it when the ball collides with the bottom wall, which means the user missed hitting it and should lose a life.

ball.py

Python3




from turtle import Turtle
 
MOVE_DIST = 10
 
class Ball(Turtle):
    def __init__(self):
        super().__init__()
        self.shape('circle')
        self.color('white')
        self.penup()
        self.x_move_dist = MOVE_DIST
        self.y_move_dist = MOVE_DIST
        self.reset()
 
    def move(self):
        # move only 10 steps ahead, both vertically
        # and horizontally.
        new_y = self.ycor() + self.y_move_dist
        new_x = self.xcor() + self.x_move_dist
        self.goto(x=new_x, y=new_y)
 
    def bounce(self, x_bounce, y_bounce):
        if x_bounce:
            # reverse the horizontal direction
            self.x_move_dist *= -1
 
        if y_bounce:
            # reverse the vertical direction
            self.y_move_dist *= -1
 
    def reset(self):
        # ball should got to an initial position,
        # always moving up.
        self.goto(x=0, y=-240)
        self.y_move_dist = 10


 

We create an infinite while loop inside which the first thing we do is update our screen, delay our program and make the ball move. The speed of the computer is much faster than what we humans can comprehend, thus we delay our program a little for each iteration. In each iteration, we are also making our ball move once. We also check what are the current coordinates of our ball. We already know the dimensions of the window, and what will be the x and y points of edges given that origin is at the centre of the window. Thus we check if our ball’s coordinates have exceeded the edges or not, based on which we make it bounce. Similarly, we will have methods to detect collisions with paddles and collisions with bricks.

main.py

Python3




import turtle as tr
from paddle import Paddle
from ball import Ball
import time
 
screen = tr.Screen()
screen.setup(width=1200, height=600)
screen.bgcolor('black')
screen.title('Breakout')
screen.tracer(0)
 
paddle = Paddle()
ball = Ball()
 
playing_game = True
 
 
screen.listen()
screen.onkey(key='Left', fun=paddle.move_left)
screen.onkey(key='Right', fun=paddle.move_right)
 
def check_collision_with_walls():
 
    global ball
 
    # detect collision with left and right walls:
    if ball.xcor() < -580 or ball.xcor() > 570:
        ball.bounce(x_bounce=True, y_bounce=False)
        return
 
    # detect collision with upper wall
    if ball.ycor() > 270:
        ball.bounce(x_bounce=False, y_bounce=True)
        return
 
    # detect collision with bottom wall
    # In this case, user failed to hit the ball
    # thus he loses. The game resets.
    if ball.ycor() < -280:
        ball.reset()
        return
 
def check_collision_with_paddle():
    pass
 
def check_collision_with_bricks():
    pass
 
while playing_game:
    screen.update()
    time.sleep(0.01)
    ball.move()
 
    check_collision_with_walls()
 
 
tr.mainloop()


Step 4: Make the Paddle be able to bounce off the ball.

The length of the paddle is 200, and the distance method of the turtle measures the distance between the centres of two turtles. Thus the paddle has 100 on the left and right. Similarly, the ball (20 X 20) has 10 around its centre point. This ball is touching the paddle when the distance between their centres is 100+10 <= 110. At the same time, we also check if the y-coordinate of the ball has reached the y-coordinate of the upper end of the paddle. When both these conditions are met, the ball is hit by the paddle and it should bounce. In the original game, we can notice that the ball changes its horizontal direction as well when it hits the extreme edge of the paddle. We check if the paddle is to the left or right of the window, inside this, we check if the ball is to the left or right of the paddle, then make it change its horizontal direction if both are on either left or right.

main.py

Python3




import turtle as tr
from paddle import Paddle
from ball import Ball
import time
 
screen = tr.Screen()
screen.setup(width=1200, height=600)
screen.bgcolor('black')
screen.title('Breakout')
screen.tracer(0)
 
paddle = Paddle()
ball = Ball()
 
playing_game = True
 
 
screen.listen()
screen.onkey(key='Left', fun=paddle.move_left)
screen.onkey(key='Right', fun=paddle.move_right)
 
def check_collision_with_walls():
 
    global ball
 
    # detect collision with left and right walls:
    if ball.xcor() < -580 or ball.xcor() > 570:
        ball.bounce(x_bounce=True, y_bounce=False)
        return
 
    # detect collision with upper wall
    if ball.ycor() > 270:
        ball.bounce(x_bounce=False, y_bounce=True)
        return
 
    # detect collision with bottom wall
    # In this case, user failed to hit the
    # ball thus he loses. The game resets.
    if ball.ycor() < -280:
        ball.reset()
        return
 
def check_collision_with_paddle():
 
    global ball, paddle
    # record x-axis coordinates of ball and paddle
    paddle_x = paddle.xcor()
    ball_x = ball.xcor()
 
    # check if ball's distance(from its middle)
    # from paddle(from its middle) is less than
    # width of paddle and ball is below a certain
    # coordinate to detect their collision
    if ball.distance(paddle) < 110 and ball.ycor() < -250:
 
        # If Paddle is on Right of Screen
        if paddle_x > 0:
            if ball_x > paddle_x:
                # If ball hits paddles left side it
                # should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # If Paddle is left of Screen
        elif paddle_x < 0:
            if ball_x < paddle_x:
                # If ball hits paddles left side it
                # should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # Else Paddle is in the Middle horizontally
        else:
            if ball_x > paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            elif ball_x < paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
def check_collision_with_bricks():
    pass
 
while playing_game:
    screen.update()
    time.sleep(0.01)
    ball.move()
 
    check_collision_with_walls()
 
    check_collision_with_paddle()
 
tr.mainloop()


Step 5: Setting up the Bricks

We create two classes. One for an individual brick and one for a collection of those bricks that appear on the window. An individual brick is a simple turtle, which is stretched sideways to make it rectangular. It also has a ‘quantity’ property, which is its weight, i.e., the number of times it needs to be hit by the ball before it disappears. This number is randomly given to a brick, we don’t want our game to be too difficult, thus we make 1 as the most assigned weight. To check when the ball collides with the brick, we need the coordinates of the four edges of the brick. x-coordinates for left and right and y-coordinates for top and bottom. A list of bricks is simply an array of bricks. We know that the starting x-coordinate and ending coordinate for the brick remain the same, for each layer or lane of brick, the only thing that changes is the y axis. Thus a single lane creating method is called inside another method which passes its y-coordinates for lanes.

bricks.py

Python3




from turtle import Turtle
import random
 
COLOR_LIST = ['light blue', 'royal blue',
              'light steel blue', 'steel blue',
              'light cyan', 'light sky blue',
              'violet', 'salmon', 'tomato',
              'sandy brown', 'purple', 'deep pink',
              'medium sea green', 'khaki']
 
weights = [1, 2, 1, 1, 3, 2, 1, 4, 1, 3,
           1, 1, 1, 4, 1, 3, 2, 2, 1, 2,
           1, 2, 1, 2, 1]
 
 
class Brick(Turtle):
    def __init__(self, x_cor, y_cor):
        super().__init__()
        self.penup()
        self.shape('square')
        self.shapesize(stretch_wid=1.5, stretch_len=3)
        self.color(random.choice(COLOR_LIST))
        self.goto(x=x_cor, y=y_cor)
 
        self.quantity = random.choice(weights)
 
        # Defining borders of the brick
        self.left_wall = self.xcor() - 30
        self.right_wall = self.xcor() + 30
        self.upper_wall = self.ycor() + 15
        self.bottom_wall = self.ycor() - 15
 
 
class Bricks:
    def __init__(self):
        self.y_start = 0
        self.y_end = 240
        self.bricks = []
        self.create_all_lanes()
 
    def create_lane(self, y_cor):
        for i in range(-570, 570, 63):
            brick = Brick(i, y_cor)
            self.bricks.append(brick)
 
    def create_all_lanes(self):
        for i in range(self.y_start, self.y_end, 32):
            self.create_lane(i)


 

Importing the bricks in our main.py makes them visible to the user. Now it is time to define the function which checks if the ball collides with a brick or not. We check the condition if the ball and brick are within touching range using the distance method. dimensions of the ball and brick are kept in mind while checking this condition, as, the touching distance is the sum beof half of each turtle’s dimension. Sometimes hit and trial needs to be done to come to an appropriate number. Once we have checked if the ball and brick have touched or not, we check if its coordinates are to left, right, top, or bottom of the brick, and then make it bounce accordingly. If it collides with a brick sideways, the horizontal direction of the ball changes, other vertical direction. When a collision is confirmed, we reduce the quantity of that brick, which when becomes equal to zero, the respective brick is first moved out of visible window range and then removed from the list.

main.py

Python3




import turtle as tr
from paddle import Paddle
from ball import Ball
from bricks import Bricks()
import time
 
screen = tr.Screen()
screen.setup(width=1200, height=600)
screen.bgcolor('black')
screen.title('Breakout')
screen.tracer(0)
 
paddle = Paddle()
bricks = Bricks()
ball = Ball()
 
playing_game = True
 
 
screen.listen()
screen.onkey(key='Left', fun=paddle.move_left)
screen.onkey(key='Right', fun=paddle.move_right)
 
def check_collision_with_walls():
 
    global ball, score, playing_game, ui
 
    # detect collision with left and right walls:
    if ball.xcor() < -580 or ball.xcor() > 570:
        ball.bounce(x_bounce=True, y_bounce=False)
        return
 
    # detect collision with upper wall
    if ball.ycor() > 270:
        ball.bounce(x_bounce=False, y_bounce=True)
        return
 
    # detect collision with bottom wall
    # In this case, user failed to hit
    # the ball thus he loses. The game resets.
    if ball.ycor() < -280:
        ball.reset()
        return
 
def check_collision_with_paddle():
 
    global ball, paddle
    # record x-axis coordinates of ball and paddle
    paddle_x = paddle.xcor()
    ball_x = ball.xcor()
 
    # check if ball's distance(from its middle)
    # from paddle(from its middle) is less than
    # width of paddle and ball is below a certain
    # coordinate to detect their collision
    if ball.distance(paddle) < 110 and ball.ycor() < -250:
 
        # If Paddle is on Right of Screen
        if paddle_x > 0:
            if ball_x > paddle_x:
                # If ball hits paddles left side it
                # should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # If Paddle is left of Screen
        elif paddle_x < 0:
            if ball_x < paddle_x:
                # If ball hits paddles left side it
                # should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # Else Paddle is in the Middle horizontally
        else:
            if ball_x > paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            elif ball_x < paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
def check_collision_with_bricks():
    global ball, bricks
 
    for brick in bricks.bricks:
        if ball.distance(brick) < 40:
            brick.quantity -= 1
            if brick.quantity == 0:
                brick.clear()
                brick.goto(3000, 3000)
                bricks.bricks.remove(brick)
 
            # detect collision from left
            if ball.xcor() < brick.left_wall:
                ball.bounce(x_bounce=True, y_bounce=False)
 
            # detect collision from right
            elif ball.xcor() > brick.right_wall:
                ball.bounce(x_bounce=True, y_bounce=False)
 
            # detect collision from bottom
            elif ball.ycor() < brick.bottom_wall:
                ball.bounce(x_bounce=False, y_bounce=True)
 
            # detect collision from top
            elif ball.ycor() > brick.upper_wall:
                ball.bounce(x_bounce=False, y_bounce=True)
 
while playing_game:
    screen.update()
    time.sleep(0.01)
    ball.move()
 
    check_collision_with_walls()
 
    check_collision_with_paddle()
 
    check_collision_with_bricks()
 
tr.mainloop()


Step 6: The Extra UI, Score,  Pausing the Game, and Detecting User Victory

The turtle needs to only write, thus we hide it. We define a maximum number of lives that will be reduced by a value of 1 in the decrease_lives method, which will be called inside main.py, whenever the user misses hitting the ball. Every time the score is updated, the previous text needs to be cleared. We also maintain a high score, which relies on data read from a text file. If the text file does not exist, we create one with and write to it a single digit, zero. Which is a high score. Otherwise, if it exists we see if it has some data or not. If it does not, again the score is aero. If no errors were met, the score is simply read and displayed.

scoreboard.py

Python3




# code
print("GFG")
from turtle import Turtle
 
try:
    score = int(open('highestScore.txt', 'r').read())
except FileNotFoundError:
    score = open('highestScore.txt', 'w').write(str(0))
except ValueError:
    score = 0
FONT = ('arial', 18, 'normal')
 
 
class Scoreboard(Turtle):
    def __init__(self, lives):
        super().__init__()
        self.color('white')
        self.penup()
        self.hideturtle()
        self.highScore = score
        self.goto(x=-580, y=260)
        self.lives = lives
        self.score = 0
        self.update_score()
 
    def update_score(self):
        self.clear()
        self.write(f"Score: {self.score} | Highest Score: {self.highScore} \
        | Lives: {self.lives}", align='left', font=FONT)
 
    def increase_score(self):
        self.score += 1
        if self.score > self.highScore:
            self.highScore += 1
        self.update_score()
 
    def decrease_lives(self):
        self.lives -= 1
        self.update_score()
 
    def reset(self):
        self.clear()
        self.score = 0
        self.update_score()
        open('highestScore.txt', 'w').write(str(self.highScore))


 

We only need to write something on the screen, so we hide the turtle without giving it any shape. We do give it a colour randomly chosen from a list of colours. We write whatever we need to write, using a method. which is called when the object is first created. When the game is paused we simply change the colour and delay the program so that it is not too fast and the user gets some time before the game resumes when he hits the spacebar again. Every time, we are writing something or changing colour, the previous text needs to be cleared, Here also we inherit the Turtle class from the turtle library.

ui.py

Python3




import time
from turtle import Turtle
import random
 
FONT = ("Courier", 52, "normal")
FONT2 = ("Courier", 32, "normal")
ALIGNMENT = 'center'
COLOR = "white"
COLOR_LIST = ['light blue', 'royal blue',
              'light steel blue', 'steel blue',
              'light cyan', 'light sky blue',
              'violet', 'salmon', 'tomato',
              'sandy brown', 'purple', 'deep pink',
              'medium sea green', 'khaki']
 
 
class UI(Turtle):
    def __init__(self):
        super().__init__()
        self.hideturtle()
        self.penup()
        self.color(random.choice(COLOR_LIST))
        self.header()
 
    def header(self):
        self.clear()
        self.goto(x=0, y=-150)
        self.write('Breakout', align=ALIGNMENT, font=FONT)
        self.goto(x=0, y=-180)
        self.write('Press Space to PAUSE or RESUME the Game',
                   align=ALIGNMENT, font=('Calibri', 14, 'normal'))
 
    def change_color(self):
        self.clear()
        self.color(random.choice(COLOR_LIST))
        self.header()
 
    def paused_status(self):
        self.clear()
        self.change_color()
        time.sleep(0.5)
 
    def game_over(self, win):
        self.clear()
        if win == True:
            self.write('You Cleared the Game', align='center', font=FONT)
        else:
            self.write("Game is Over", align='center', font=FONT)


We listen to the additional key, to the Spacebar to pause the game. Pressing the key simply calls a function that reverses a boolean value which is used to run everything inside the infinite while loop if it is true. If this boolean value is false, we just keep changing the colour of our UI. Since the ball moves only when the move method is called inside the loop, which is now under the boolean check, the entire game is paused because the ball is not moving. We also decrease life whenever the ball touches the bottom wall. Similarly, we need to increase the score if the ball hits a brick. We also need to show the game over whenever we have run out of lives, and end the while loop.

main.py

Python3




import turtle as tr
from paddle import Paddle
from ball import Ball
from scoreboard import Scoreboard
from ui import UI
from bricks import Bricks
import time
 
 
screen = tr.Screen()
screen.setup(width=1200, height=600)
screen.bgcolor('black')
screen.title('Breakout')
screen.tracer(0)
 
ui = UI()
ui.header()
 
score = Scoreboard(lives=5)
paddle = Paddle()
bricks = Bricks()
 
 
ball = Ball()
 
game_paused = False
playing_game = True
 
 
def pause_game():
    global game_paused
    if game_paused:
        game_paused = False
    else:
        game_paused = True
 
 
screen.listen()
screen.onkey(key='Left', fun=paddle.move_left)
screen.onkey(key='Right', fun=paddle.move_right)
screen.onkey(key='space', fun=pause_game)
 
 
def check_collision_with_walls():
 
    global ball, score, playing_game, ui
 
    # detect collision with left and right walls:
    if ball.xcor() < -580 or ball.xcor() > 570:
        ball.bounce(x_bounce=True, y_bounce=False)
        return
 
    # detect collision with upper wall
    if ball.ycor() > 270:
        ball.bounce(x_bounce=False, y_bounce=True)
        return
 
    # detect collision with bottom wall
    # In this case, user failed to hit the
    # ball thus he loses. The game resets.
    if ball.ycor() < -280:
        ball.reset()
        score.decrease_lives()
        if score.lives == 0:
            score.reset()
            playing_game = False
            ui.game_over(win=False)
            return
        ui.change_color()
        return
 
 
def check_collision_with_paddle():
 
    global ball, paddle
    # record x-axis coordinates of ball and paddle
    paddle_x = paddle.xcor()
    ball_x = ball.xcor()
 
    # check if ball's distance(from its middle)
    # from paddle(from its middle) is less than
    # width of paddle and ball is below a certain
    # coordinate to detect their collision
    if ball.distance(paddle) < 110 and ball.ycor() < -250:
 
        # If Paddle is on Right of Screen
        if paddle_x > 0:
            if ball_x > paddle_x:
                # If ball hits paddles left side
                # it should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # If Paddle is left of Screen
        elif paddle_x < 0:
            if ball_x < paddle_x:
                # If ball hits paddles left side it
                # should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # Else Paddle is in the Middle horizontally
        else:
            if ball_x > paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            elif ball_x < paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
 
def check_collision_with_bricks():
    global ball, score, bricks
 
    for brick in bricks.bricks:
        if ball.distance(brick) < 40:
            score.increase_score()
            brick.quantity -= 1
            if brick.quantity == 0:
                brick.clear()
                brick.goto(3000, 3000)
                bricks.bricks.remove(brick)
 
            # detect collision from left
            if ball.xcor() < brick.left_wall:
                ball.bounce(x_bounce=True, y_bounce=False)
 
            # detect collision from right
            elif ball.xcor() > brick.right_wall:
                ball.bounce(x_bounce=True, y_bounce=False)
 
            # detect collision from bottom
            elif ball.ycor() < brick.bottom_wall:
                ball.bounce(x_bounce=False, y_bounce=True)
 
            # detect collision from top
            elif ball.ycor() > brick.upper_wall:
                ball.bounce(x_bounce=False, y_bounce=True)
 
 
while playing_game:
 
    if not game_paused:
 
        # UPDATE SCREEN WITH ALL THE MOTION
        # THAT HAS HAPPENED
        screen.update()
        time.sleep(0.01)
        ball.move()
 
        # DETECTING COLLISION WITH WALLS
        check_collision_with_walls()
 
        # DETECTING COLLISION WITH THE PADDLE
        check_collision_with_paddle()
 
        # DETECTING COLLISION WITH A BRICK
        check_collision_with_bricks()
         
        # DETECTING USER'S VICTORY
        if len(bricks.bricks) == 0:
            ui.game_over(win=True)
            break
 
    else:
        ui.paused_status()
 
 
tr.mainloop()


The Final Code

main.py

Python3




import turtle as tr
from paddle import Paddle
from ball import Ball
from scoreboard import Scoreboard
from ui import UI
from bricks import Bricks
import time
 
 
screen = tr.Screen()
screen.setup(width=1200, height=600)
screen.bgcolor('black')
screen.title('Breakout')
screen.tracer(0)
 
ui = UI()
ui.header()
 
score = Scoreboard(lives=5)
paddle = Paddle()
bricks = Bricks()
 
 
ball = Ball()
 
game_paused = False
playing_game = True
 
 
def pause_game():
    global game_paused
    if game_paused:
        game_paused = False
    else:
        game_paused = True
 
 
screen.listen()
screen.onkey(key='Left', fun=paddle.move_left)
screen.onkey(key='Right', fun=paddle.move_right)
screen.onkey(key='space', fun=pause_game)
 
 
def check_collision_with_walls():
 
    global ball, score, playing_game, ui
 
    # detect collision with left and right walls:
    if ball.xcor() < -580 or ball.xcor() > 570:
        ball.bounce(x_bounce=True, y_bounce=False)
        return
 
    # detect collision with upper wall
    if ball.ycor() > 270:
        ball.bounce(x_bounce=False, y_bounce=True)
        return
 
    # detect collision with bottom wall
    # In this case, user failed to hit the ball
    # thus he loses. The game resets.
    if ball.ycor() < -280:
        ball.reset()
        score.decrease_lives()
        if score.lives == 0:
            score.reset()
            playing_game = False
            ui.game_over(win=False)
            return
        ui.change_color()
        return
 
 
def check_collision_with_paddle():
 
    global ball, paddle
    # record x-axis coordinates of ball and paddle
    paddle_x = paddle.xcor()
    ball_x = ball.xcor()
 
    # check if ball's distance(from its middle)
    # from paddle(from its middle) is less than
    # width of paddle and ball is below a certain
    #coordinate to detect their collision
    if ball.distance(paddle) < 110 and ball.ycor() < -250:
 
        # If Paddle is on Right of Screen
        if paddle_x > 0:
            if ball_x > paddle_x:
                # If ball hits paddles left side it
                # should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # If Paddle is left of Screen
        elif paddle_x < 0:
            if ball_x < paddle_x:
                # If ball hits paddles left side it
                # should go back to left
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
        # Else Paddle is in the Middle horizontally
        else:
            if ball_x > paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            elif ball_x < paddle_x:
                ball.bounce(x_bounce=True, y_bounce=True)
                return
            else:
                ball.bounce(x_bounce=False, y_bounce=True)
                return
 
 
def check_collision_with_bricks():
    global ball, score, bricks
 
    for brick in bricks.bricks:
        if ball.distance(brick) < 40:
            score.increase_score()
            brick.quantity -= 1
            if brick.quantity == 0:
                brick.clear()
                brick.goto(3000, 3000)
                bricks.bricks.remove(brick)
 
            # detect collision from left
            if ball.xcor() < brick.left_wall:
                ball.bounce(x_bounce=True, y_bounce=False)
 
            # detect collision from right
            elif ball.xcor() > brick.right_wall:
                ball.bounce(x_bounce=True, y_bounce=False)
 
            # detect collision from bottom
            elif ball.ycor() < brick.bottom_wall:
                ball.bounce(x_bounce=False, y_bounce=True)
 
            # detect collision from top
            elif ball.ycor() > brick.upper_wall:
                ball.bounce(x_bounce=False, y_bounce=True)
 
 
while playing_game:
 
    if not game_paused:
 
        # UPDATE SCREEN WITH ALL THE MOTION THAT HAS HAPPENED
        screen.update()
        time.sleep(0.01)
        ball.move()
 
        # DETECTING COLLISION WITH WALLS
        check_collision_with_walls()
 
        # DETECTING COLLISION WITH THE PADDLE
        check_collision_with_paddle()
 
        # DETECTING COLLISION WITH A BRICK
        check_collision_with_bricks()
         
        # DETECTING USER'S VICTORY
        if len(bricks.bricks) == 0:
            ui.game_over(win=True)
            break
 
    else:
        ui.paused_status()
 
 
tr.mainloop()


ball.py

Python3




from turtle import Turtle
 
MOVE_DIST = 10
 
 
class Ball(Turtle):
    def __init__(self):
        super().__init__()
        self.shape('circle')
        self.color('white')
        self.penup()
        self.x_move_dist = MOVE_DIST
        self.y_move_dist = MOVE_DIST
        self.reset()
 
    def move(self):
        new_y = self.ycor() + self.y_move_dist
        new_x = self.xcor() + self.x_move_dist
        self.goto(x=new_x, y=new_y)
 
    def bounce(self, x_bounce, y_bounce):
        if x_bounce:
            self.x_move_dist *= -1
 
        if y_bounce:
            self.y_move_dist *= -1
 
    def reset(self):
        self.goto(x=0, y=-240)
        self.y_move_dist = 10


bricks.py

Python3




from turtle import Turtle
import random
 
COLOR_LIST = ['light blue', 'royal blue',
              'light steel blue', 'steel blue',
              'light cyan', 'light sky blue',
              'violet', 'salmon', 'tomato',
              'sandy brown', 'purple', 'deep pink',
              'medium sea green', 'khaki']
 
weights = [1, 2, 1, 1, 3, 2, 1, 4, 1,
           3, 1, 1, 1, 4, 1, 3, 2, 2,
           1, 2, 1, 2, 1, 2, 1]
 
 
class Brick(Turtle):
    def __init__(self, x_cor, y_cor):
        super().__init__()
        self.penup()
        self.shape('square')
        self.shapesize(stretch_wid=1.5, stretch_len=3)
        self.color(random.choice(COLOR_LIST))
        self.goto(x=x_cor, y=y_cor)
 
        self.quantity = random.choice(weights)
 
        # Defining borders of the brick
        self.left_wall = self.xcor() - 30
        self.right_wall = self.xcor() + 30
        self.upper_wall = self.ycor() + 15
        self.bottom_wall = self.ycor() - 15
 
 
class Bricks:
    def __init__(self):
        self.y_start = 0
        self.y_end = 240
        self.bricks = []
        self.create_all_lanes()
 
    def create_lane(self, y_cor):
        for i in range(-570, 570, 63):
            brick = Brick(i, y_cor)
            self.bricks.append(brick)
 
    def create_all_lanes(self):
        for i in range(self.y_start, self.y_end, 32):
            self.create_lane(i)


paddle.py

Python3




from turtle import Turtle
 
 
MOVE_DIST = 70
 
 
class Paddle(Turtle):
    def __init__(self):
        super().__init__()
        self.color('steel blue')
        self.shape('square')
        self.penup()
        self.shapesize(stretch_wid=1, stretch_len=10)
        self.goto(x=0, y=-280)
 
    def move_left(self):
        self.backward(MOVE_DIST)
 
    def move_right(self):
        self.forward(MOVE_DIST)


scoreboard.py

Python3




from turtle import Turtle
 
try:
    score = int(open('highestScore.txt', 'r').read())
except FileNotFoundError:
    score = open('highestScore.txt', 'w').write(str(0))
except ValueError:
    score = 0
FONT = ('arial', 18, 'normal')
 
 
class Scoreboard(Turtle):
    def __init__(self, lives):
        super().__init__()
        self.color('white')
        self.penup()
        self.hideturtle()
        self.highScore = score
        self.goto(x=-580, y=260)
        self.lives = lives
        self.score = 0
        self.update_score()
 
    def update_score(self):
        self.clear()
        self.write(f"Score: {self.score} | Highest Score: \
        {self.highScore} | Lives: {self.lives}", align='left',
                   font=FONT)
 
    def increase_score(self):
        self.score += 1
        if self.score > self.highScore:
            self.highScore += 1
        self.update_score()
 
    def decrease_lives(self):
        self.lives -= 1
        self.update_score()
 
    def reset(self):
        self.clear()
        self.score = 0
        self.update_score()
        open('highestScore.txt', 'w').write(str(self.highScore))


ui.py

Python3




import time
from turtle import Turtle
import random
 
FONT = ("Courier", 52, "normal")
FONT2 = ("Courier", 32, "normal")
ALIGNMENT = 'center'
COLOR = "white"
COLOR_LIST = ['light blue', 'royal blue',
              'light steel blue', 'steel blue',
              'light cyan', 'light sky blue',
              'violet', 'salmon', 'tomato',
              'sandy brown', 'purple', 'deep pink',
              'medium sea green', 'khaki']
 
 
class UI(Turtle):
    def __init__(self):
        super().__init__()
        self.hideturtle()
        self.penup()
        self.color(random.choice(COLOR_LIST))
        self.header()
 
    def header(self):
        self.clear()
        self.goto(x=0, y=-150)
        self.write('Breakout', align=ALIGNMENT, font=FONT)
        self.goto(x=0, y=-180)
        self.write('Press Space to PAUSE or RESUME the Game',
                   align=ALIGNMENT, font=('Calibri', 14, 'normal'))
 
    def change_color(self):
        self.clear()
        self.color(random.choice(COLOR_LIST))
        self.header()
 
    def paused_status(self):
        self.clear()
        self.change_color()
        time.sleep(0.5)
 
    def game_over(self, win):
        self.clear()
        if win == True:
            self.write('You Cleared the Game', align='center', font=FONT)
        else:
            self.write("Game is Over", align='center', font=FONT)


Output:

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!