Count zeros in a row wise and column wise sorted matrix
Given a N x N binary matrix (elements in matrix can be either 1 or 0) where each row and column of the matrix is sorted in ascending order, count number of 0s present in it.
Expected time complexity is O(N).
Examples:
Input: [0, 0, 0, 0, 1] [0, 0, 0, 1, 1] [0, 1, 1, 1, 1] [1, 1, 1, 1, 1] [1, 1, 1, 1, 1] Output: 8 Input: [0, 0] [0, 0] Output: 4 Input: [1, 1, 1, 1] [1, 1, 1, 1] [1, 1, 1, 1] [1, 1, 1, 1] Output: 0
The idea is very simple. We start from the bottom-left corner of the matrix and repeat below steps until we find the top or right edge of the matrix.
- Decrement row index until we find a 0.
- Add number of 0s in current column i.e. current row index + 1 to the result and move right to next column (Increment col index by 1).
The above logic will work since the matrix is row-wise and column-wise sorted. The logic will also work for any matrix containing non-negative integers.
Below is the implementation of above idea :
C++
// C++ program to count number of 0s in the given // row-wise and column-wise sorted binary matrix. #include <iostream> using namespace std; // define size of square matrix #define N 5 // Function to count number of 0s in the given // row-wise and column-wise sorted binary matrix. int countZeroes( int mat[N][N]) { // start from bottom-left corner of the matrix int row = N - 1, col = 0; // stores number of zeroes in the matrix int count = 0; while (col < N) { // move up until you find a 0 while (mat[row][col]) // if zero is not found in current column, // we are done if (--row < 0) return count; // add 0s present in current column to result count += (row + 1); // move right to next column col++; } return count; } // Driver Program to test above functions int main() { int mat[N][N] = { { 0, 0, 0, 0, 1 }, { 0, 0, 0, 1, 1 }, { 0, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1 } }; cout << countZeroes(mat); return 0; } |
C
// C program to count number of 0s in the given // row-wise and column-wise sorted binary matrix. #include <stdio.h> // define size of square matrix #define N 5 // Function to count number of 0s in the given // row-wise and column-wise sorted binary matrix. int countZeroes( int mat[N][N]) { // start from bottom-left corner of the matrix int row = N - 1, col = 0; // stores number of zeroes in the matrix int count = 0; while (col < N) { // move up until you find a 0 while (mat[row][col]) // if zero is not found in current column, // we are done if (--row < 0) return count; // add 0s present in current column to result count += (row + 1); // move right to next column col++; } return count; } // Driver Program to test above functions int main() { int mat[N][N] = { { 0, 0, 0, 0, 1 }, { 0, 0, 0, 1, 1 }, { 0, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1 } }; printf ( "%d" ,countZeroes(mat)); return 0; } // This code is contributed by kothavvsaakash. |
Java
// Java program to count number of 0s in the given // row-wise and column-wise sorted binary matrix import java.io.*; class GFG { public static int N = 5 ; // Function to count number of 0s in the given // row-wise and column-wise sorted binary matrix. static int countZeroes( int mat[][]) { // start from bottom-left corner of the matrix int row = N - 1 , col = 0 ; // stores number of zeroes in the matrix int count = 0 ; while (col < N) { // move up until you find a 0 while (mat[row][col] > 0 ) // if zero is not found in current column, // we are done if (--row < 0 ) return count; // add 0s present in current column to result count += (row + 1 ); // move right to next column col++; } return count; } // Driver program public static void main (String[] args) { int mat[][] = { { 0 , 0 , 0 , 0 , 1 }, { 0 , 0 , 0 , 1 , 1 }, { 0 , 1 , 1 , 1 , 1 }, { 1 , 1 , 1 , 1 , 1 }, { 1 , 1 , 1 , 1 , 1 } }; System.out.println(countZeroes(mat)); } } // This code is contributed by Pramod Kumar |
Python
# Python program to count number # of 0s in the given row-wise # and column-wise sorted # binary matrix. # Function to count number # of 0s in the given # row-wise and column-wise # sorted binary matrix. def countZeroes(mat): # start from bottom-left # corner of the matrix N = 5 ; row = N - 1 ; col = 0 ; # stores number of # zeroes in the matrix count = 0 ; while (col < N): # move up until # you find a 0 while (mat[row][col]): # if zero is not found # in current column, we # are done if (row < 0 ): return count; row = row - 1 ; # add 0s present in # current column to result count = count + (row + 1 ); # move right to # next column col = col + 1 ; return count; # Driver Code mat = [[ 0 , 0 , 0 , 0 , 1 ], [ 0 , 0 , 0 , 1 , 1 ], [ 0 , 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 , 1 ]]; print ( countZeroes(mat)); # This code is contributed # by chandan_jnu |
C#
// C# program to count number of // 0s in the given row-wise and // column-wise sorted binary matrix using System; class GFG { public static int N = 5; // Function to count number of // 0s in the given row-wise and // column-wise sorted binary matrix. static int countZeroes( int [,] mat) { // start from bottom-left // corner of the matrix int row = N - 1, col = 0; // stores number of zeroes // in the matrix int count = 0; while (col < N) { // move up until you find a 0 while (mat[row,col] > 0) // if zero is not found in // current column, // we are done if (--row < 0) return count; // add 0s present in current // column to result count += (row + 1); // move right to next column col++; } return count; } // Driver Code public static void Main () { int [,] mat = { { 0, 0, 0, 0, 1 }, { 0, 0, 0, 1, 1 }, { 0, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1 }, { 1, 1, 1, 1, 1 } }; Console.WriteLine(countZeroes(mat)); } } // This code is contributed by KRV. |
PHP
<?php // PHP program to count number // of 0s in the given row-wise // and column-wise sorted // binary matrix. // Function to count number // of 0s in the given // row-wise and column-wise // sorted binary matrix. function countZeroes( $mat ) { // start from bottom-left // corner of the matrix $N = 5; $row = $N - 1; $col = 0; // stores number of // zeroes in the matrix $count = 0; while ( $col < $N ) { // move up until // you find a 0 while ( $mat [ $row ][ $col ]) // if zero is not found // in current column, we // are done if (-- $row < 0) return $count ; // add 0s present in // current column to result $count += ( $row + 1); // move right to // next column $col ++; } return $count ; } // Driver Code $mat = array ( array (0, 0, 0, 0, 1), array (0, 0, 0, 1, 1), array (0, 1, 1, 1, 1), array (1, 1, 1, 1, 1), array (1, 1, 1, 1, 1)); echo countZeroes( $mat ); // This code is contributed by Sam007 ?> |
Javascript
<script> // JavaScript program to count number of 0s in the given // row-wise and column-wise sorted binary matrix let N = 5; // Function to count number of 0s in the given // row-wise and column-wise sorted binary matrix. function countZeroes(mat) { // start from bottom-left corner of the matrix let row = N - 1, col = 0; // stores number of zeroes in the matrix let count = 0; while (col < N) { // move up until you find a 0 while (mat[row][col] > 0) // if zero is not found in current column, // we are done if (--row < 0) return count; // add 0s present in current column to result count += (row + 1); // move right to next column col++; } return count; } // Driver code let mat = [[ 0, 0, 0, 0, 1 ], [ 0, 0, 0, 1, 1 ], [ 0, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ]]; document.write(countZeroes(mat)); </script> |
8
Time complexity of above solution is O(n) since the solution follows single path from bottom-left corner to top or right edge of the matrix.
Auxiliary space used by the program is O(1). since no extra space has been taken.
This article is contributed by Aditya Goel. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...