Count triplets (a, b, c) such that a + b, b + c and a + c are all divisible by K | Set 2
Given two positive integers N and K, the task is to count the number of triplets (a, b, c) such that 0 < a, b, c < N and (a + b), (b + c) and (c + a) are all multiples of K.
Examples:
Input: N = 2, K = 2
Output: 2
Explanation: All possible triplets that satisfy the given property are (1, 1, 1) and (2, 2, 2).
Therefore, the total count is 2.Input: N = 3, K = 2
Output: 9
Naive Approach: Refer to the previous post for the simplest approach to solve this problem.
Time Complexity: O(N3)
Auxiliary Space: O(1)
Efficient Approach: The above approach can also be optimized based on the following observations:
- The given condition is expressed by a congruence formula:
=> a + b ≡ b + c ≡ c + a ≡ 0(mod K)
=> a+b ≡ b+c (mod K)
=> a ≡ c(mod K)
- The above relation can also be observed without using the congruence formula as:
- As (a + b) is a multiple of K and (c + b) is a multiple of K. Therefore, (a + b) − (c + b) = a – c is also a multiple of K, i.e., a ≡ b ≡ c (mod K).
- Therefore, the expression can be further evaluated to:
=> a + b ≡ 0 (mod K)
=> a + a ≡ 0 (mod K) (since a is congruent to b)
=> 2a ≡ 0 (mod K)
From the above observations, the result can be calculated for the following two cases:
- If K is odd, then a ≡ b ≡ c ≡ 0(mod K) since all three are congruent and the total number of triplets can be calculated as (N / K)3.
- If K is even, then K is divisible by 2 and a ≡ 0 (mod K), b ≡ 0 (mod K), and c ≡ 0 (mod K). Therefore, the total number of triplets can be calculated as (N / K)3 ((N + (K/2)) / K)3.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include "bits/stdc++.h" using namespace std; // Function to count the number of // triplets from the range [1, N - 1] // having sum of all pairs divisible by K int countTriplets( int N, int K) { // If K is even if (K % 2 == 0) { long long int x = N / K; long long int y = (N + (K / 2)) / K; return x * x * x + y * y * y; } // Otherwise else { long long int x = N / K; return x * x * x; } } // Driver Code int main() { int N = 2, K = 2; cout << countTriplets(N, K); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG{ // Function to count the number of // triplets from the range [1, N - 1] // having sum of all pairs divisible by K static int countTriplets( int N, int K) { // If K is even if (K % 2 == 0 ) { int x = N / K; int y = (N + (K / 2 )) / K; return x * x * x + y * y * y; } // Otherwise else { int x = N / K; return x * x * x; } } // Driver Code public static void main(String[] args) { int N = 2 , K = 2 ; System.out.print(countTriplets(N, K)); } } // This code is contributed by Kingash |
Python3
# Python3 program for the above approach # Function to count the number of # triplets from the range [1, N - 1] # having sum of all pairs divisible by K def countTriplets(N, K): # If K is even if (K % 2 = = 0 ): x = N / / K y = (N + (K / / 2 )) / / K return x * x * x + y * y * y # Otherwise else : x = N / / K return x * x * x # Driver Code if __name__ = = "__main__" : N = 2 K = 2 print (countTriplets(N, K)) # This code is contributed by ukasp |
Javascript
<script> // Javascript program for the above approach // Function to count the number of // triplets from the range [1, N - 1] // having sum of all pairs divisible by K function countTriplets(N, K) { // If K is even if (K % 2 == 0) { var x = parseInt(N / K); var y = parseInt((N + (K / 2)) / K); return x * x * x + y * y * y; } // Otherwise else { var x = parseInt(N / K); return x * x * x; } } // Driver Code var N = 2, K = 2; document.write(countTriplets(N, K)); // This code is contributed by Ankita saini </script> |
C#
// C# program for the above approach using System; class GFG{ // Function to count the number of // triplets from the range [1, N - 1] // having sum of all pairs divisible by K static int countTriplets( int N, int K) { // If K is even if (K % 2 == 0) { int x = N / K; int y = (N + (K / 2)) / K; return x * x * x + y * y * y; } // Otherwise else { int x = N / K; return x * x * x; } } // Driver Code static void Main() { int N = 2, K = 2; Console.Write(countTriplets(N, K)); } } // This code is contributed by SoumikMondal |
Javascript
<script> // JavaScript program for the above approach // Function to count the number of // triplets from the range [1, N - 1] // having sum of all pairs divisible by K function countTriplets(N,K) { // If K is even if (K % 2 == 0) { let x = parseInt(N / K, 10); let y = parseInt((N + parseInt(K / 2, 10)) / K, 10); return x * x * x + y * y * y; } // Otherwise else { let x = parseInt(N / K, 10); return x * x * x; } } // Driver Code let N = 2, K = 2; document.write(countTriplets(N, K)); </script> |
2
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...