Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count total set bits in all numbers from 1 to N | Set 3

  • Difficulty Level : Medium
  • Last Updated : 11 Jun, 2021

Given a positive integer N, the task is to count the total number of set bits in binary representation of all the numbers from 1 to N.

Examples: 

Input: N = 3 
Output:
setBits(1) + setBits(2) + setBits(3) = 1 + 1 + 2 = 4

Input: N = 6 
Output:
 

Approach: Solution to this problem has been published in the Set 1 and the Set 2 of this article. Here, a dynamic programming based approach is discussed.  

  • Base case: Number of set bits in 0 is 0.
  • For any number n: n and n>>1 has same no of set bits except for the rightmost bit.

Example: n = 11 (1011),  n >> 1 = 5 (101)… same bits in 11 and 5 are marked bold. So assuming we already know set bit count of 5, we only need to take care for the rightmost bit of 11 which is 1. setBit(11) = setBit(5) + 1 = 2 + 1 = 3

Rightmost bit is 1 for odd and 0 for even number.

Recurrence Relation: setBit(n) = setBit(n>>1) + (n & 1) and setBit(0) = 0

We can use bottom-up dynamic programming approach to solve this.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// set bits in all the integers
// from the range [1, n]
int countSetBits(int n)
{
 
    // To store the required count
    // of the set bits
    int cnt = 0;
 
    // To store the count of set
    // bits in every integer
    vector<int> setBits(n + 1);
 
    // 0 has no set bit
    setBits[0] = 0;
 
    for (int i = 1; i <= n; i++) {
 
        setBits[i] = setBits[i >> 1] + (i & 1);
    }
 
    // Sum all the set bits
    for (int i = 0; i <= n; i++) {
        cnt = cnt + setBits[i];
    }
 
    return cnt;
}
 
// Driver code
int main()
{
    int n = 6;
 
    cout << countSetBits(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to return the count of
// set bits in all the integers
// from the range [1, n]
static int countSetBits(int n)
{
 
    // To store the required count
    // of the set bits
    int cnt = 0;
 
    // To store the count of set
    // bits in every integer
    int []setBits = new int[n + 1];
 
    // 0 has no set bit
    setBits[0] = 0;
 
    // For the rest of the elements
    for (int i = 1; i <= n; i++) {
 
        setBits[i] = setBits[i >> 1] + (i & 1);
    }
 
    // Sum all the set bits
    for (int i = 0; i <= n; i++)
    {
        cnt = cnt + setBits[i];
    }
    return cnt;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 6;
 
    System.out.println(countSetBits(n));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation of the approach
 
# Function to return the count of
# set bits in all the integers
# from the range [1, n]
def countSetBits(n):
 
    # To store the required count
    # of the set bits
    cnt = 0
 
    # To store the count of set
    # bits in every integer
    setBits = [0 for x in range(n + 1)]
 
    # 0 has no set bit
    setBits[0] = 0
 
    # For the rest of the elements
    for i in range(1, n + 1):
        setBits[i] = setBits[i // 2] + (i & 1)
 
    # Sum all the set bits
    for i in range(0, n + 1):
        cnt = cnt + setBits[i]
     
    return cnt
 
# Driver code
n = 6
print(countSetBits(n))
 
# This code is contributed by Sanjit Prasad


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the count of
    // set bits in all the integers
    // from the range [1, n]
    static int countSetBits(int n)
    {
     
        // To store the required count
        // of the set bits
        int cnt = 0;
     
        // To store the count of set
        // bits in every integer
        int []setBits = new int[n + 1];
     
        // 0 has no set bit
        setBits[0] = 0;
     
        // 1 has a single set bit
        setBits[1] = 1;
     
        // For the rest of the elements
        for (int i = 2; i <= n; i++)
        {
     
            // If current element i is even then
            // it has set bits equal to the count
            // of the set bits in i / 2
            if (i % 2 == 0)
            {
                setBits[i] = setBits[i / 2];
            }
     
            // Else it has set bits equal to one
            // more than the previous element
            else
            {
                setBits[i] = setBits[i - 1] + 1;
            }
        }
     
        // Sum all the set bits
        for (int i = 0; i <= n; i++)
        {
            cnt = cnt + setBits[i];
        }
        return cnt;
    }
     
    // Driver code
    static public void Main ()
    {
        int n = 6;
     
        Console.WriteLine(countSetBits(n));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of
// set bits in all the integers
// from the range [1, n]
function countSetBits(n)
{
     
    // To store the required count
    // of the set bits
    var cnt = 0;
 
    // To store the count of set
    // bits in every integer
    var setBits = Array.from(
        {length: n + 1}, (_, i) => 0);
 
    // 0 has no set bit
    setBits[0] = 0;
 
    // 1 has a single set bit
    setBits[1] = 1;
 
    // For the rest of the elements
    for(i = 2; i <= n; i++)
    {
         
        // If current element i is even then
        // it has set bits equal to the count
        // of the set bits in i / 2
        if (i % 2 == 0)
        {
            setBits[i] = setBits[i / 2];
        }
 
        // Else it has set bits equal to one
        // more than the previous element
        else
        {
            setBits[i] = setBits[i - 1] + 1;
        }
    }
 
    // Sum all the set bits
    for(i = 0; i <= n; i++)
    {
        cnt = cnt + setBits[i];
    }
    return cnt;
}
 
// Driver code
var n = 6;
 
document.write(countSetBits(n));
 
// This code is contributed by 29AjayKumar
 
</script>


Output: 

9

 

Another simple and easy to understand solution:

A simple easy to implement and understand solution would be not using bits operations.  The solution is to directly count set bits using __builtin_popcount() .The solution is explained in code using comments.

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// set bits in all the integers
// from the range [1, n]
int countSetBits(int n)
{
 
    // To store the required count
    // of the set bits
    int cnt = 0;
 
    // Calculate set bits in each number using
    // __builtin_popcount() and  Sum all the set bits
    for (int i = 1; i <= n; i++) {
        cnt = cnt + __builtin_popcount(i);
    }
 
    return cnt;
}
 
// Driver code
int main()
{
    int n = 6;
 
    cout << countSetBits(n);
 
    return 0;
}
 
// This article is contributed by Abhishek


Output

9

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!