Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count total bits in a number

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a positive number n, count total bit in it.
Examples: 
 

Input : 13
Output : 4
Binary representation of 13 is 1101

Input  : 183
Output : 8

Input  : 4096
Output : 13

 

 

Method 1 (Using Log)

The log2(n) logarithm in base 2 of n, which is the exponent to which 2 is raised to get n only integer and we add 1 find total bit in a number in log(n) time.
 

C++




// C++ program to find total bit in given number
#include <iostream>    
#include <cmath>
  
unsigned countBits(unsigned int number)
{    
    
    // log function in base 2
    // take only integer part
    return (int)log2(number)+1;
}
  
// Driven program    
int main()
{
    unsigned int num = 65;
    std::cout<<countBits(num)<<'\n';
    return 0;
}
  
// This code is contributed by thedev05.


C




// C program to find total bit in given number
#include <stdio.h>      
#include <math.h>
  
unsigned countBits(unsigned int number)
{      
      // log function in base 2 
      // take only integer part
      return (int)log2(number)+1;
}
  
// Driven program       
int main()
{
    unsigned int num = 65;
    printf("%d\n", countBits(num));
    return 0;


Java




// Java program to 
// find total bit
// in given number
import java.io.*;
  
class GFG 
{
    static int countBits(int number)
    
          
        // log function in base 2 
        // take only integer part
        return (int)(Math.log(number) / 
                     Math.log(2) + 1);
    }
      
    // Driver code
    public static void main (String[] args) 
    {
        int num = 65;
          
        System.out.println(countBits(num));
                                  
    }
}
  
// This code is contributed by vij


Python3




# Python3 program to find 
# total bit in given number
import math
def countBits(number):
      
    # log function in base 2 
    # take only integer part
    return int((math.log(number) / 
                math.log(2)) + 1);
  
# Driver Code
num = 65;
print(countBits(num));
  
# This code is contributed by mits


C#




// C# program to find total bit
// in given number
using System;
  
class GFG {
      
    static uint countBits(uint number)
    {     
          
        // log function in base 2 
        // take only integer part
        return (uint)Math.Log(number , 2.0) + 1;
    }
      
    // Driver code
    public static void Main() 
    {
        uint num = 65;
          
        Console.WriteLine(countBits(num));
                                  
    }
}
  
// This code is contributed by Sam007.


PHP




<?php
// PHP program to find total
// bit in given number
  
function countBits($number)
      
    // log function in base 2 
    // take only integer part
    return (int)(log($number) / 
                   log(2)) + 1;
}
  
// Driver Code
$num = 65;
echo(countBits($num));
  
// This code is contributed by Ajit.
?>


Javascript




<script>
// JavaScript program to find total bit in given number 
  
    function countBits(number) {       
      // log function in base 2  
      // take only integer part 
      return Math.floor(Math.log2(number)+1); 
    
    
    // Driven program        
  
    let num = 65; 
    document.write(countBits(num)); 
   
// This code is contributed by Surbhi Tyagi 
</script>


Output

7

 Time Complexity : O(logn)

Auxiliary Space : O(1)

Method 2 (Using Bit Traversal)

 

C




/* Function to get no of bits in binary
   representation of positive integer */
#include <stdio.h>         
     
unsigned int countBits(unsigned int n)
{
   unsigned int count = 0;
   while (n)
   {
        count++;
        n >>= 1;
    }
    return count;
}
   
/* Driver program*/
int main()
{
    int i = 65;
    printf("%d", countBits(i));
    return 0;
}


Java




/* Function to get no of bits in binary
representation of positive integer */
class GFG {
  
    static int countBits(int n)
    {
        int count = 0;
        while (n != 0)
        {
            count++;
            n >>= 1;
        }
          
        return count;
    }
      
    /* Driver program*/
    public static void main(String[] arg)
    {
        int i = 65;
        System.out.print(countBits(i));
    }
}
  
// This code is contributed by Smitha.


Python3




# Function to get no of bits 
# in binary representation 
# of positive integer 
  
def countBits(n):
  
    count = 0
    while (n):
        count += 1
        n >>= 1
          
    return count
  
# Driver program
i = 65
print(countBits(i))
  
# This code is contributed
# by Smitha


C#




/* Function to get no of bits 
in binary representation of 
positive integer */
using System;
  
class GFG
{
    static int countBits(int n)
    {
        int count = 0;
        while (n != 0)
        {
            count++;
            n >>= 1;
        }
          
        return count;
    }
      
    // Driver Code
    static public void Main ()
    {
        int i = 65;
        Console.Write(countBits(i));
    }
}
  
// This code is contributed 
// by akt_mit.


PHP




<?php
// PHP Code to get no of bits in binary
// representation of positive integer
  
// Function to get no of bits in binary
// representation of positive integer 
function countBits($n)
{
    $count = 0;
    while ($n)
    {
        $count++;
        $n >>= 1;
    }
    return $count;
}
  
// Driver Code
$i = 65;
echo(countBits($i));
  
// This code is contributed by Ajit.
?>


Javascript




<script>
  
/* Function to get no of bits 
in binary representation of 
positive integer */
function countBits(n)
{
    var count = 0;
    while (n != 0)
    {
        count++;
        n >>= 1;
    }
      
    return count;
}
  
// Driver Code
var i = 65;
document.write(countBits(i));
  
</script>


Output

7

Time Complexity : O(logn)

Auxiliary Space : O(1)

Method 3 ( Using conversion from binary to string)

C++




// C++ program to implement the approach
#include <bits/stdc++.h>
using namespace std;
  
// function to count the number of bits in a number n
int count_bits(int n)
{
  
  // to_string() returns the binary string 
  // representation of the number n
  string binary = bitset< 64 >(n).to_string();
    
  // returning the length of the binary string
  return 64 - binary.find('1');
}
  
int main()
{
    int a = 65;
    int b = 183;
  
    cout << "Total bits in " << a << " : " << count_bits(a) << endl;
    cout << "Total bits in " << b << " : " << count_bits(b) << endl;
}
  
// This code is contributed by phasing17


Java




// Java code to implement the approach
class GFG {
  
    // function to count the number of bits in a number n
    static int count_bits(int n)
    {
        // return the length of the binary string
        return Integer.toBinaryString(n).length();
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int a = 65;
        int b = 183;
  
        // function call
        System.out.printf("Total bits in %d: %d\n", a,
                          count_bits(a));
        System.out.printf("Total bits in %d: %d\n", b,
                          count_bits(b));
    }
}
  
// this code is contributed by phasing17


Python3




# function to count the number of bits in a number n
def count_bits(n):
  # bin(n) returns a binary string representation of n preceded by '0b' in python
  binary = bin(n)
    
  # we did -2 from length of binary string to ignore '0b'
  return len(binary)-2
  
a = 65
b = 183
  
print(f"Total bits in {a}: {count_bits(a)}")
print(f"Total bits in {b}: {count_bits(b)}")
  
# This code is contributed by udit


C#




// C# code to implement the approach
  
using System;
  
class GFG {
  
    // function to count the number of bits in a number n
    static int count_bits(int n)
    {
        // return the length of the binary string
        return Convert.ToString(n, 2).Length;
    }
  
    // Driver Code
    public static void Main(string[] args)
    {
        int a = 65;
        int b = 183;
  
        // function call
        Console.WriteLine("Total bits in " + a + " : "
                          + count_bits(a));
        Console.WriteLine("Total bits in " + b + " : "
                          + count_bits(b));
    }
}
  
// this code is contributed by phasing17


Javascript




// JavaScript program to implement the approach
  
// function to count the number of bits in a number n
function count_bits(n)
{
  
  // toString(2) returns the binary string 
  // representation of the number n
  let binary = n.toString(2);
    
  // returning the length of the binary string
  return binary.length;
}
  
let a = 65;
let b = 183;
  
console.log("Total bits in", a, ":", count_bits(a));
console.log("Total bits in", b, ":", count_bits(b));
  
// This code is contributed by phasing17


Output

Total bits : 7
Total bits : 8

Time Complexity : O(logn)

Auxiliary Space : O(1)

This article is contributed by Gyayak Jain. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Last Updated : 15 Jul, 2022
Like Article
Save Article
Similar Reads
Related Tutorials