Count three-digit numbers having difference X with its reverse
Given an integer X, the task is to count the total number of three-digit numbers having difference X with its reverse. If no such number exists, then print -1.
Examples:
Input: X = 792
Output : 10
Explanation :
901 – 109 = 792
911 – 119 = 792
921 – 129 = 792
931 – 139 = 792
941 – 149 = 792
951 – 159 = 792
961 – 169 = 792
971 – 179 = 792
981 – 189 = 792
991 – 199 = 792Input: X = 0
Output: 90
Approach: The given problem can be solved based on the following observations:
Let N = rpq
Therefore, N = 100r + 10q + p
Therefore, reverse of N = 100p + 10q + r
Therefore, the problem reduces to solving (100r + 10q + p) – (r + 10q + 100p) = X
-> 99(r – p) = X
-> r – p = X / 99
Therefore, if given X is a multiple of 99, then solution exists.
Follow the steps below to solve the problem based on the above observations:
- Check if X is multiple of 99 or not. If not found to be true, print -1 as no solution exists.
- Otherwise, calculate X / 99. Generate all pairs using digits [1, 9] and for each pair, check if their difference is equal to X / 99 or not.
- If found to be true for any pair, increase count by 10, as the middle digit can be permuted to place any value from the range [0, 9] for the obtained pair.
- Finally, print the value of the count obtained.
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to count three-digit // numbers having difference x // with its reverse int Count_Number( int x) { int ans = 0; // if x is not multiple of 99 if (x % 99 != 0) { // No solution exists ans = -1; } else { int diff = x / 99; // Generate all possible pairs // of digits [1, 9] for ( int i = 1; i < 10; i++) { for ( int j = 1; j < 10; j++) { // If any pair is obtained // with difference x / 99 if ((i - j) == diff) { // Increase count ans += 10; } } } } // Return the count return ans; } // Driver Code int main() { int x = 792; cout << Count_Number(x) << endl; return 0; } |
Java
// Java program to implement // the above approach import java.io.*; import java.util.Arrays; class GFG{ // Function to count three-digit // numbers having difference x // with its reverse static int Count_Number( int x) { int ans = 0 ; // If x is not multiple of 99 if (x % 99 != 0 ) { // No solution exists ans = - 1 ; } else { int diff = x / 99 ; // Generate all possible pairs // of digits [1, 9] for ( int i = 1 ; i < 10 ; i++) { for ( int j = 1 ; j < 10 ; j++) { // If any pair is obtained // with difference x / 99 if ((i - j) == diff) { // Increase count ans += 10 ; } } } } // Return the count return ans; } // Driver Code public static void main (String[] args) { int x = 792 ; System.out.println(Count_Number(x)); } } // This code is contributed by sanjoy_62 |
Python3
# Python3 program to implement # the above approach # Function to count three-digit # numbers having difference x # with its reverse def Count_Number(x): ans = 0 ; # If x is not multiple # of 99 if (x % 99 ! = 0 ): # No solution exists ans = - 1 ; else : diff = x / 99 ; # Generate all possible pairs # of digits [1, 9] for i in range ( 1 , 10 ): for j in range ( 1 , 10 ): # If any pair is obtained # with difference x / 99 if ((i - j) = = diff): # Increase count ans + = 10 ; # Return the count return ans; # Driver Code if __name__ = = '__main__' : x = 792 ; print (Count_Number(x)); # This code is contributed by shikhasingrajput |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to count three-digit // numbers having difference x // with its reverse static int Count_Number( int x) { int ans = 0; // If x is not multiple of 99 if (x % 99 != 0) { // No solution exists ans = -1; } else { int diff = x / 99; // Generate all possible pairs // of digits [1, 9] for ( int i = 1; i < 10; i++) { for ( int j = 1; j < 10; j++) { // If any pair is obtained // with difference x / 99 if ((i - j) == diff) { // Increase count ans += 10; } } } } // Return the count return ans; } // Driver Code public static void Main() { int x = 792; Console.WriteLine(Count_Number(x)); } } // This code is contributed by code_hunt |
Javascript
<script> // Javascript program to implement // the above approach // Function to count three-digit // numbers having difference x // with its reverse function Count_Number(x) { let ans = 0; // If x is not multiple of 99 if (x % 99 != 0) { // No solution exists ans = -1; } else { let diff = x / 99; // Generate all possible pairs // of digits [1, 9] for (let i = 1; i < 10; i++) { for (let j = 1; j < 10; j++) { // If any pair is obtained // with difference x / 99 if ((i - j) == diff) { // Increase count ans += 10; } } } } // Return the count return ans; } // Driver code let x = 792; document.write(Count_Number(x)); // This code is contributed by splevel62 </script> |
10
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...