Count the nodes whose weight is a perfect square
Given a tree, and the weights of all the nodes, the task is to count the number of nodes whose weight is a perfect Square.
Examples:
Input:
Output: 3
Only the weights of nodes 1, 4 and 5 are perfect squares.
Approach: Perform dfs on the tree and for every node, check if it’s weight is a perfect square or not.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int ans = 0; vector< int > graph[100]; vector< int > weight(100); // Function that returns true // if n is a perfect square bool isPerfectSquare( int n) { double x = sqrt (n); if ( floor (x) != ceil (x)) return false ; return true ; } // Function to perform dfs void dfs( int node, int parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1; for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver code int main() { int x = 15; // Weights of the node weight[1] = 4; weight[2] = 5; weight[3] = 3; weight[4] = 25; weight[5] = 16; weight[6] = 30; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); graph[5].push_back(6); dfs(1, 1); cout << ans; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG{ static int ans = 0 ; static Vector<Integer>[] graph = new Vector[ 100 ]; static int [] weight = new int [ 100 ]; // Function that returns true // if n is a perfect square static boolean isPerfectSquare( int n) { double x = Math.sqrt(n); if (Math.floor(x) != Math.ceil(x)) return false ; return true ; } // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1 ; for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver code public static void main(String[] args) { int x = 15 ; for ( int i = 0 ; i < 100 ; i++) graph[i] = new Vector<>(); // Weights of the node weight[ 1 ] = 4 ; weight[ 2 ] = 5 ; weight[ 3 ] = 3 ; weight[ 4 ] = 25 ; weight[ 5 ] = 16 ; weight[ 6 ] = 30 ; // Edges of the tree graph[ 1 ].add( 2 ); graph[ 2 ].add( 3 ); graph[ 2 ].add( 4 ); graph[ 1 ].add( 5 ); graph[ 5 ].add( 6 ); dfs( 1 , 1 ); System.out.print(ans); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach from math import * ans = 0 graph = [[] for i in range ( 100 )] weight = [ 0 ] * 100 # Function that returns true # if n is a perfect square def isPerfectSquare(n): x = sqrt(n) if (floor(x) ! = ceil(x)): return False return True # Function to perform dfs def dfs(node, parent): global ans # If weight of the current node # is a perfect square if (isPerfectSquare(weight[node])): ans + = 1 ; for to in graph[node]: if (to = = parent): continue dfs(to, node) # Driver code x = 15 # Weights of the node weight[ 1 ] = 4 weight[ 2 ] = 5 weight[ 3 ] = 3 weight[ 4 ] = 25 weight[ 5 ] = 16 weight[ 6 ] = 30 # Edges of the tree graph[ 1 ].append( 2 ) graph[ 2 ].append( 3 ) graph[ 2 ].append( 4 ) graph[ 1 ].append( 5 ) graph[ 5 ].append( 6 ) dfs( 1 , 1 ) print (ans) # This code is contributed by SHUBHAMSINGH10 |
C#
// C# program for the above approach using System; using System.Collections; using System.Collections.Generic; using System.Text; class GFG{ static int ans = 0; static ArrayList[] graph = new ArrayList[100]; static int [] weight = new int [100]; // Function that returns true // if n is a perfect square static bool isPerfectSquare( int n) { double x = Math.Sqrt(n); if (Math.Floor(x) != Math.Ceiling(x)) return false ; return true ; } // Function to perform dfs static void dfs( int node, int parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1; foreach ( int to in graph[node]) { if (to == parent) continue ; dfs(to, node); } } // Driver Code public static void Main( string [] args) { //int x = 15; for ( int i = 0; i < 100; i++) graph[i] = new ArrayList(); // Weights of the node weight[1] = 4; weight[2] = 5; weight[3] = 3; weight[4] = 25; weight[5] = 16; weight[6] = 30; // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); graph[5].Add(6); dfs(1, 1); Console.Write(ans); } } // This code is contributed by rutvik_56 |
Javascript
<script> // Javascript implementation of the approach let ans=0; let graph = new Array(100); let weight = new Array(100); for (let i=0;i<100;i++) { graph[i]=[]; weight[i]=0; } // Function that returns true // if n is a perfect square function isPerfectSquare(n) { let x = Math.sqrt(n); if (Math.floor(x) != Math.ceil(x)) return false ; return true ; } // Function to perform dfs function dfs(node,parent) { // If weight of the current node // is a perfect square if (isPerfectSquare(weight[node])) ans += 1; for (let to=0;to<graph[node].length;to++) { if (graph[node][to] == parent) continue dfs(graph[node][to], node); } } // Driver code x = 15; // Weights of the node weight[1] = 4; weight[2] = 5; weight[3] = 3; weight[4] = 25; weight[5] = 16; weight[6] = 30; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); graph[5].push(6); dfs(1, 1); document.write( ans); // This code is contributed by unknown2108 </script> |
Output:
3
Complexity Analysis:
- Time Complexity: O(N*logV) where V is the maximum weight of a node in the tree.
In DFS, every node of the tree is processed once and hence the complexity due to the DFS is O(N) for N nodes in the tree. Also, while processing every node, in order to check if the node value is a perfect square or not, the inbuilt sqrt(V), is being called where V is the weight of the node and this function has a complexity of O(log V). Hence for every node, there is an added complexity of O(log V). Therefore, the total time complexity is O(N*logV). - Auxiliary Space: O(1).
Any extra space is not required, so the space complexity is constant.