Skip to content
Related Articles

Related Articles

Count Substrings that can be made of length 1 by replacing “01” or “10” with 1 or 0

View Discussion
Improve Article
Save Article
  • Last Updated : 16 Aug, 2022
View Discussion
Improve Article
Save Article

Given a binary string S of length N, the task is to find the number of pairs of integers [L, R] 1 ≤ L < R ≤ N such that S[L . . . R] (the substring of S from L to R) can be reduced to 1 length string by replacing substrings “01” or “10” with “1” and “0” respectively.

Examples:

Input: S = “0110”
Output: 4
Explanation: The 4 substrings are 01, 10, 110, 0110.

Input: S = “00000”
Output: 0

 

Approach: The solution is based on the following mathematical idea:

We can solve this based on the exclusion principle. Instead of finding possible pairs find the number of impossible cases and subtract that from all possible substrings (i.e. N*(N+1)/2 ).

How to find impossible cases?

When s[i] and s[i-1] are same, then after reduction it will either become “00” or “11”. In both cases, the substring cannot be reduced to length 1. So substring from 0 to i, from 1 to i, . . . cannot be made to have length 1. That count of substrings is i.

Follow the below steps to solve the problem:

  • Initialize answer ans = N * (N + 1) / 2
  • Run a loop from i = 1 to N – 1
    • If S[i] is equal to S[i – 1], then subtract i from ans.
  • Return ans – N (because there are N substrings having length 1).

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
#define ll long long
using namespace std;
 
// Function to return number of
// substring
ll find(string Str)
{
 
    ll n = Str.size();
 
    ll ans = n * (n + 1) / 2;
 
    for (ll i = 1; i < n; i++) {
        if (Str[i] == Str[i - 1])
            ans -= i;
    }
 
    return ans - n;
}
 
// Driver code
int main()
{
    string S = "0110";
 
    // Function Call
    cout << find(S) << endl;
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
 
class GFG {
    // Function to return number of
    // substring
    public static long find(String Str)
    {
 
        int n = Str.length();
 
        long ans = n * (n + 1) / 2;
 
        for (int i = 1; i < n; i++) {
            if (Str.charAt(i) == Str.charAt(i - 1))
                ans -= i;
        }
 
        return ans - n;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String S = "0110";
 
        // Function Call
        System.out.println(find(S));
    }
}
 
// This code is contributed by Rohit Pradhan


Python3




# Pyrthon3 code to implement the approach
 
# Function to return number of
# substring
def find(Str):
    n = len(Str)
    ans = n * (n + 1) / 2
 
    for i in range(0, n):
        if (Str[i] == Str[i - 1]):
            ans -= i;
 
    return ans - n
 
# Driver Code
if __name__ == "__main__":
    S = "0110"
    print(int(find(S)));
 
    # This code is contributed by hrithikgarg03188.


C#




// C# code to implement the approach
 
using System;
 
public class GFG {
 
    // Function to return number of substring
    public static long find(String Str)
    {
 
        int n = Str.Length;
 
        long ans = n * (n + 1) / 2;
 
        for (int i = 1; i < n; i++) {
            if (Str[i] == Str[i - 1])
                ans -= i;
        }
 
        return ans - n;
    }
 
    static public void Main()
    {
 
        // Code
        String S = "0110";
 
        // Function Call
        Console.WriteLine(find(S));
    }
}
 
// This code is contributed by lokeshmvs21.


Javascript




<script>
    // JavaScript code for the above approach
 
    // Function to return number of
    // substring
    function find(Str)
    {
 
        let n = Str.length;
 
        let ans = n * (n + 1) / 2;
 
        for (let i = 1; i < n; i++) {
            if (Str[i] == Str[i - 1])
                ans -= i;
        }
 
        return ans - n;
    }
 
    // Driver Code
     
    let S = "0110";
 
     // Function Call
    document.write(find(S));
 
// This code is contributed by sanjoy_62.
</script>


Output

4

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!