Count submatrices having only ‘X’ in given Matrix
Given a character matrix consisting of O’s and X’s, find the number of submatrices containing only ‘X’ and surrounded by ‘O’ from all sides.
Examples:
Input: grid[][] = {{X, O, X}, {O, X, O}, {X, X, X}}
Output: 3Input: grid[][] = { { ‘X’, ‘O’, ‘X’, ‘X’ }, { ‘O’, ‘O’, ‘X’, ‘X’ }, { ‘X’, ‘X’, ‘O’, ‘O’ }, { ‘O’, ‘O’, ‘X’, ‘X’ }, { ‘X’, ‘O’, ‘O’, ‘O’ } };
Output: 5
Explanation: See the image below for understandingImage of the above matrix
Submatrices containing X using DFS:
Follow the below idea to solve the problem:
Run a dfs for each X and find the submatrix whose part it is.
Below are the steps to solve the problem:
- Initialize a 2D array (say visited[][]) having the size same as the given matrix just to keep track of the visited cell in the given matrix.
- Perform the DFS Traversal on the unvisited cell having the value ‘X’ in the given matrix
- Then mark this cell as visited and recursively call DFS for all four directions i.e right, left, up, and down to make all the connected ‘X’ as visited and count this connected ‘X’ shape in the resultant count.
- Repeat the above steps until all the cells having value ‘X’ are not visited.
Below is the implementation of the above approach.
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to check if it is valid // to move on the next cell bool isValid( int row, int col, vector<vector< char > >& grid, vector<vector< int > >& visited) { return (row < grid.size()) && (row >= 0) && (col < grid[0].size()) && (col >= 0) && (grid[row][col] == 'X' ) && (visited[row][col] == 0); } // Function to implement dfs void dfs( int row, int col, vector<vector< char > >& grid, vector<vector< int > >& visited) { if (!isValid(row, col, grid, visited)) return ; visited[row][col] = 1; dfs(row + 1, col, grid, visited); dfs(row, col + 1, grid, visited); dfs(row - 1, col, grid, visited); dfs(row, col - 1, grid, visited); } // Function to count the total number of submatrices int xShape(vector<vector< char > >& grid) { int n = grid.size(); int m = grid[0].size(); vector<vector< int > > visited(n, vector< int >(m, 0)); int count = 0; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (visited[i][j] == 0 and grid[i][j] == 'X' ) { dfs(i, j, grid, visited); count++; } } } return count; } // Driver code int main() { vector<vector< char > > grid{ { 'X' , 'O' , 'X' , 'X' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'X' , 'O' , 'O' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'O' , 'O' , 'O' } }; // Function Call cout << xShape(grid); return 0; } |
Java
// Java Code to implement above approach import java.util.*; public class Solution { // Function to check if it is valid // to move on the next cell static boolean isValid( int row, int col, char [][] grid, int [][] visited) { return (row < grid.length) && (row >= 0 ) && (col < grid[ 0 ].length) && (col >= 0 ) && (grid[row][col] == 'X' ) && (visited[row][col] == 0 ); } // Function to implement dfs static void dfs( int row, int col, char [][] grid, int [][] visited) { if (!isValid(row, col, grid, visited)) return ; visited[row][col] = 1 ; dfs(row + 1 , col, grid, visited); dfs(row, col + 1 , grid, visited); dfs(row - 1 , col, grid, visited); dfs(row, col - 1 , grid, visited); } // Function to count the total number of submatrices static int xShape( char [][] grid) { int n = grid.length; int m = grid[ 0 ].length; int [][] visited = new int [n][m]; int count = 0 ; for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { if (visited[i][j] == 0 && grid[i][j] == 'X' ) { dfs(i, j, grid, visited); count++; } } } return count; } // Driver code public static void main(String[] args) { char [][] grid = { { 'X' , 'O' , 'X' , 'X' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'X' , 'O' , 'O' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'O' , 'O' , 'O' } }; System.out.println(xShape(grid)); } } // This code is contributed by karandeep1234 |
Python3
# Function to check if it is valid # to move on the next cell def is_valid(row, col, grid, visited): return (row < len (grid)) and (row > = 0 ) and (col < len (grid[ 0 ])) and (col > = 0 ) and (grid[row][col] = = 'X' ) and (visited[row][col] = = 0 ) # Function to implement dfs def dfs(row, col, grid, visited): if not is_valid(row, col, grid, visited): return visited[row][col] = 1 dfs(row + 1 , col, grid, visited) dfs(row, col + 1 , grid, visited) dfs(row - 1 , col, grid, visited) dfs(row, col - 1 , grid, visited) # Function to count the total number of submatrices def x_shape(grid): n = len (grid) m = len (grid[ 0 ]) visited = [[ 0 for _ in range (m)] for _ in range (n)] count = 0 for i in range (n): for j in range (m): if visited[i][j] = = 0 and grid[i][j] = = 'X' : dfs(i, j, grid, visited) count + = 1 return count grid = [ [ 'X' , 'O' , 'X' , 'X' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'X' , 'O' , 'O' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'O' , 'O' , 'O' ] ] #Function call print (x_shape(grid)) # contributed by akashish__ |
C#
// C# Code to implement above approach using System; public class Solution { // Function to check if it is valid // to move on the next cell static bool isValid( int row, int col, char [, ] grid, int [, ] visited) { return (row < grid.GetLength(0)) && (row >= 0) && (col < grid.GetLength(1)) && (col >= 0) && (grid[row, col] == 'X' ) && (visited[row, col] == 0); } // Function to implement dfs static void dfs( int row, int col, char [, ] grid, int [, ] visited) { if (!isValid(row, col, grid, visited)) return ; visited[row, col] = 1; dfs(row + 1, col, grid, visited); dfs(row, col + 1, grid, visited); dfs(row - 1, col, grid, visited); dfs(row, col - 1, grid, visited); } // Function to count the total number of submatrices static int xShape( char [, ] grid) { int n = grid.GetLength(0); int m = grid.GetLength(1); int [, ] visited = new int [n, m]; int count = 0; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (visited[i, j] == 0 && grid[i, j] == 'X' ) { dfs(i, j, grid, visited); count++; } } } return count; } // Driver code public static void Main( string [] args) { char [, ] grid = new char [, ] { { 'X' , 'O' , 'X' , 'X' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'X' , 'O' , 'O' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'O' , 'O' , 'O' } }; Console.WriteLine(xShape(grid)); } } // This code is contributed by karandeep1234 |
Javascript
<script> // JavaScript code for the above approach // Function to check if it is valid // to move on the next cell function isValid(row, col, grid, visited) { return (row < grid.length) && (row >= 0) && (col < grid[0].length) && (col >= 0) && (grid[row][col] == 'X' ) && (visited[row][col] == 0); } // Function to implement dfs function dfs(row, col, grid, visited) { if (!isValid(row, col, grid, visited)) return ; visited[row][col] = 1; dfs(row + 1, col, grid, visited); dfs(row, col + 1, grid, visited); dfs(row - 1, col, grid, visited); dfs(row, col - 1, grid, visited); } // Function to count the total number of submatrices function xShape(grid) { let n = grid.length; let m = grid[0].length; let visited = new Array(n); for (let i = 0; i < n; i++) { visited[i] = new Array(m).fill(0); } let count = 0; for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { if (visited[i][j] == 0 && grid[i][j] == 'X' ) { dfs(i, j, grid, visited); count++; } } } return count; } // Driver code let grid = [[ 'X' , 'O' , 'X' , 'X' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'X' , 'O' , 'O' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'O' , 'O' , 'O' ]]; // Function Call document.write(xShape(grid)); // This code is contributed by Potta Lokesh </script> |
5
Time Complexity: O(ROW x COL)
Auxiliary Space: O(ROW x COL), where ROW = Number of rows in the given grid, COL = Number of columns in the given grid.
Space Optimized approach for finding Submatrices containing X:
In the above method, we are using an extra space i.e the visited[ ][ ] array in order to keep track of the visited cell. Alternatively, We can do this without using the Auxiliary space but for that, we have to change the given matrix.
Below are the steps to solve the problem:
- Just Perform the DFS Traversal on the cell having the value ‘X’ in the given matrix then change the value of that cell to ‘O’ so that it will not visit it again and
- Recursively call DFS in all the four directions i.e right, left, up and down to change all the connected ‘X’ to ‘O’ and count this connected ‘X’ shape in the resultant count.
- Repeat the above steps until all the ‘X’ in the given matrix are not changed to ‘O’.
Below is the implementation for the above approach.
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to check if it is valid // to traverse the next cell bool isValid( int row, int col, vector<vector< char > >& grid) { return (row < grid.size()) && (row >= 0) && (col < grid[0].size()) && (col >= 0) && (grid[row][col] == 'X' ); } // Function to implement dfs void dfs( int row, int col, vector<vector< char > >& grid) { if (!isValid(row, col, grid)) return ; grid[row][col] = 'O' ; dfs(row + 1, col, grid); dfs(row, col + 1, grid); dfs(row - 1, col, grid); dfs(row, col - 1, grid); } // Function to count the submatrices int xShape(vector<vector< char > >& grid) { // Code here int n = grid.size(); int m = grid[0].size(); int count = 0; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (grid[i][j] == 'X' ) { dfs(i, j, grid); count++; } } } return count; } // Driver code int main() { vector<vector< char > > grid{ { 'X' , 'O' , 'X' , 'X' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'X' , 'O' , 'O' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'O' , 'O' , 'O' } }; // Function Call cout << xShape(grid); return 0; } |
Java
/*package whatever //do not write package name here */ import java.io.*; class GFG { // Function to check if it is valid // to traverse the next cell static boolean isValid( int row, int col, char [][] grid) { return (row < grid.length) && (row >= 0 ) && (col < grid[ 0 ].length) && (col >= 0 ) && (grid[row][col] == 'X' ); } // Function to implement dfs static void dfs( int row, int col, char [][] grid) { if (!isValid(row, col, grid)) return ; grid[row][col] = 'O' ; dfs(row + 1 , col, grid); dfs(row, col + 1 , grid); dfs(row - 1 , col, grid); dfs(row, col - 1 , grid); } // Function to count the submatrices static int xShape( char [][] grid) { // Code here int n = grid.length; int m = grid[ 0 ].length; int count = 0 ; for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { if (grid[i][j] == 'X' ) { dfs(i, j, grid); count++; } } } return count; } public static void main(String[] args) { char [][] grid = { { 'X' , 'O' , 'X' , 'X' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'X' , 'O' , 'O' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'O' , 'O' , 'O' } }; // Function Call System.out.println(xShape(grid)); } } // This code is contributed by aadityaburujwale. |
Python3
class GFG : # Function to check if it is valid # to traverse the next cell @staticmethod def isValid( row, col, grid) : return (row < len (grid)) and (row > = 0 ) and (col < len (grid[ 0 ])) and (col > = 0 ) and (grid[row][col] = = 'X' ) # Function to implement dfs @staticmethod def dfs( row, col, grid) : if ( not GFG.isValid(row, col, grid)) : return grid[row][col] = 'O' GFG.dfs(row + 1 , col, grid) GFG.dfs(row, col + 1 , grid) GFG.dfs(row - 1 , col, grid) GFG.dfs(row, col - 1 , grid) # Function to count the submatrices @staticmethod def xShape( grid) : # Code here n = len (grid) m = len (grid[ 0 ]) count = 0 i = 0 while (i < n) : j = 0 while (j < m) : if (grid[i][j] = = 'X' ) : GFG.dfs(i, j, grid) count + = 1 j + = 1 i + = 1 return count @staticmethod def main( args) : grid = [[ 'X' , 'O' , 'X' , 'X' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'X' , 'O' , 'O' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'O' , 'O' , 'O' ]] # Function Call print (GFG.xShape(grid)) if __name__ = = "__main__" : GFG.main([]) # This code is contributed by aadityaburujwale. |
Javascript
<script> // JavaScript code for the above approach // Function to check if it is valid // to move on the next cell function isValid(row, col, grid, visited) { return (row < grid.length) && (row >= 0) && (col < grid[0].length) && (col >= 0) && (grid[row][col] == 'X' ) && (visited[row][col] == 0); } // Function to implement dfs function dfs(row, col, grid, visited) { if (!isValid(row, col, grid, visited)) return ; visited[row][col] = 1; dfs(row + 1, col, grid, visited); dfs(row, col + 1, grid, visited); dfs(row - 1, col, grid, visited); dfs(row, col - 1, grid, visited); } // Function to count the total number of submatrices function xShape(grid) { let n = grid.length; let m = grid[0].length; let visited = new Array(n); for (let i = 0; i < n; i++) { visited[i] = new Array(m).fill(0); } let count = 0; for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { if (visited[i][j] == 0 && grid[i][j] == 'X' ) { dfs(i, j, grid, visited); count++; } } } return count; } // Driver code let grid = [[ 'X' , 'O' , 'X' , 'X' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'X' , 'O' , 'O' ], [ 'O' , 'O' , 'X' , 'X' ], [ 'X' , 'O' , 'O' , 'O' ]]; // Function Call document.write(xShape(grid)); // This code is contributed by Potta Lokesh </script> |
C#
// C# code to implement the approach using System; public class GFG { // Function to check if it is valid // to traverse the next cell static bool isValid( int row, int col, char [, ] grid) { return (row < grid.GetLength(0)) && (row >= 0) && (col < grid.GetLength(1)) && (col >= 0) && (grid[row, col] == 'X' ); } // Function to implement dfs static void dfs( int row, int col, char [, ] grid) { if (!isValid(row, col, grid)) return ; grid[row, col] = 'O' ; dfs(row + 1, col, grid); dfs(row, col + 1, grid); dfs(row - 1, col, grid); dfs(row, col - 1, grid); } // Function to count the submatrices static int xShape( char [, ] grid) { // Code here int n = grid.GetLength(0); int m = grid.GetLength(1); int count = 0; for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { if (grid[i, j] == 'X' ) { dfs(i, j, grid); count++; } } } return count; } static public void Main() { // Code char [, ] grid = { { 'X' , 'O' , 'X' , 'X' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'X' , 'O' , 'O' }, { 'O' , 'O' , 'X' , 'X' }, { 'X' , 'O' , 'O' , 'O' } }; // Function Call Console.WriteLine(xShape(grid)); } } // This code is contributed by lokeshmvs21. |
5
Time Complexity: O(ROW x COL)
Auxiliary Space: O(1)
Please Login to comment...