Count subarrays with same even and odd elements
Given an array of N integers, count number of even-odd subarrays. An even – odd subarray is a subarray that contains the same number of even as well as odd integers.
Examples :
Input : arr[] = {2, 5, 7, 8} Output : 3 Explanation : There are total 3 even-odd subarrays. 1) {2, 5} 2) {7, 8} 3) {2, 5, 7, 8} Input : arr[] = {3, 4, 6, 8, 1, 10} Output : 3 Explanation : In this case, 3 even-odd subarrays are: 1) {3, 4} 2) {8, 1} 3) {1, 10}
This problem is mainly a variation of count subarrays with equal number of 0s and 1s.
A naive approach would be to check for all possible subarrays using two loops, whether they are even-odd subarrays or not. This approach will take time.
An Efficient approach solves the problem in O(N) time and it is based on following ideas:
- Even-odd subarrays will always be of even length.
- Maintaining track of the difference between the frequency of even and odd integers.
- Hashing of this difference of frequencies is useful in finding number of even-odd subarrays.
The basic idea is to use the difference between the frequency of odd and even numbers to obtain an optimal solution. We will maintain two integer hash arrays for the positive and negative value of the difference. -> Example to understand in better way : -> Consider difference = freq(odd) - freq(even) -> To calculate this difference, increment the value of 'difference' when there is an odd integer and decrement it when there is an even integer. (initially, difference = 0) arr[] = {3, 4, 6, 8, 1, 10} index 0 1 2 3 4 5 6 array 3 4 6 8 1 10 difference 0 1 0 -1 -2 -1 -2 -> Observe that whenever a value 'k' repeats in the 'difference' array, there exists an even-odd subarray for each previous occurrence of that value i.e. subarray exists from index i + 1 to j where difference[i] = k and difference[j] = k. -> Value '0' is repeated in 'difference' array at index 2 and hence subarray exists for (0, 2] indexes. Similarly, for repetition of values '-1' (at indexes 3 and 5) and '-2' (at indexes 4 and 6), subarray exists for (3, 5] and (4, 6] indexes.
Below is the implementation of the O(N) solution described above.
C++
/*C++ program to find total number of even-odd subarrays present in given array*/ #include <bits/stdc++.h> using namespace std; // function that returns the count of subarrays that // contain equal number of odd as well as even numbers int countSubarrays( int arr[], int n) { // initialize difference and answer with 0 int difference = 0; int ans = 0; // create two auxiliary hash arrays to count frequency // of difference, one array for non-negative difference // and other array for negative difference. Size of these // two auxiliary arrays is 'n+1' because difference can // reach maximum value 'n' as well as minimum value '-n' int hash_positive[n + 1], hash_negative[n + 1]; // initialize these auxiliary arrays with 0 fill_n(hash_positive, n + 1, 0); fill_n(hash_negative, n + 1, 0); // since the difference is initially 0, we have to // initialize hash_positive[0] with 1 hash_positive[0] = 1; // for loop to iterate through whole // array (zero-based indexing is used) for ( int i = 0; i < n ; i++) { // incrementing or decrementing difference based on // arr[i] being even or odd, check if arr[i] is odd if (arr[i] & 1 == 1) difference++; else difference--; // adding hash value of 'difference' to our answer // as all the previous occurrences of the same // difference value will make even-odd subarray // ending at index 'i'. After that, we will increment // hash array for that 'difference' value for // its occurrence at index 'i'. if difference is // negative then use hash_negative if (difference < 0) { ans += hash_negative[-difference]; hash_negative[-difference]++; } // else use hash_positive else { ans += hash_positive[difference]; hash_positive[difference]++; } } // return total number of even-odd subarrays return ans; } // Driver code int main() { int arr[] = {3, 4, 6, 8, 1, 10, 5, 7}; int n = sizeof (arr) / sizeof (arr[0]); // Printing total number of even-odd subarrays cout << "Total Number of Even-Odd subarrays" " are " << countSubarrays(arr,n); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
/*C program to find total number of even-odd subarrays present in given array*/ #include <stdio.h> // function that returns the count of subarrays that // contain equal number of odd as well as even numbers int countSubarrays( int arr[], int n) { // initialize difference and answer with 0 int difference = 0; int ans = 0; // create two auxiliary hash arrays to count frequency // of difference, one array for non-negative difference // and other array for negative difference. Size of // these two auxiliary arrays is 'n+1' because // difference can reach maximum value 'n' as well as // minimum value '-n' int hash_positive[n + 1], hash_negative[n + 1]; // initialize these auxiliary arrays with 0 for ( int i = 0; i < n + 1; i++) hash_positive[i] = 0; for ( int i = 0; i < n + 1; i++) hash_negative[i] = 0; // since the difference is initially 0, we have to // initialize hash_positive[0] with 1 hash_positive[0] = 1; // for loop to iterate through whole // array (zero-based indexing is used) for ( int i = 0; i < n; i++) { // incrementing or decrementing difference based on // arr[i] being even or odd, check if arr[i] is odd if (arr[i] & 1 == 1) difference++; else difference--; // adding hash value of 'difference' to our answer // as all the previous occurrences of the same // difference value will make even-odd subarray // ending at index 'i'. After that, we will // increment hash array for that 'difference' value // for its occurrence at index 'i'. if difference is // negative then use hash_negative if (difference < 0) { ans += hash_negative[-difference]; hash_negative[-difference]++; } // else use hash_positive else { ans += hash_positive[difference]; hash_positive[difference]++; } } // return total number of even-odd subarrays return ans; } // Driver code int main() { int arr[] = { 3, 4, 6, 8, 1, 10, 5, 7 }; int n = sizeof (arr) / sizeof (arr[0]); // Printing total number of even-odd subarrays printf ( "Total Number of Even-Odd subarrays are %d " , countSubarrays(arr, n)); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// Java program to find total number of even-odd subarrays // present in given array class GFG { // function that returns the count of subarrays that // contain equal number of odd as well as even numbers static int countSubarrays( int [] arr, int n) { // initialize difference and answer with 0 int difference = 0 ; int ans = 0 ; // create two auxiliary hash arrays to count // frequency of difference, one array for // non-negative difference and other array for // negative difference. Size of these two auxiliary // arrays is 'n+1' because difference can reach // maximum value 'n' as well as minimum value '-n' // initialize these auxiliary arrays with 0 int [] hash_positive = new int [n + 1 ]; int [] hash_negative = new int [n + 1 ]; // since the difference is initially 0, we have to // initialize hash_positive[0] with 1 hash_positive[ 0 ] = 1 ; // for loop to iterate through whole array // (zero-based indexing is used) for ( int i = 0 ; i < n; i++) { // incrementing or decrementing difference based // on arr[i] being even or odd, check if arr[i] // is odd if ((arr[i] & 1 ) == 1 ) difference++; else difference--; // adding hash value of 'difference' to our // answer as all the previous occurrences of the // same difference value will make even-odd // subarray ending at index 'i'. After that, we // will increment hash array for that // 'difference' value for its occurrence at // index 'i'. if difference is negative then use // hash_negative if (difference < 0 ) { ans += hash_negative[-difference]; hash_negative[-difference]++; } // else use hash_positive else { ans += hash_positive[difference]; hash_positive[difference]++; } } // return total number of even-odd subarrays return ans; } // Driver code public static void main(String[] args) { int [] arr = new int [] { 3 , 4 , 6 , 8 , 1 , 10 , 5 , 7 }; int n = arr.length; // Printing total number of even-odd subarrays System.out.println( "Total Number of Even-Odd subarrays are " + countSubarrays(arr, n)); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# Python3 program to find total # number of even-odd subarrays # present in given array # function that returns the count # of subarrays that contain equal # number of odd as well as even numbers def countSubarrays(arr, n): # initialize difference and # answer with 0 difference = 0 ans = 0 # create two auxiliary hash # arrays to count frequency # of difference, one array # for non-negative difference # and other array for negative # difference. Size of these two # auxiliary arrays is 'n+1' # because difference can reach # maximum value 'n' as well as # minimum value '-n' hash_positive = [ 0 ] * (n + 1 ) hash_negative = [ 0 ] * (n + 1 ) # since the difference is # initially 0, we have to # initialize hash_positive[0] with 1 hash_positive[ 0 ] = 1 # for loop to iterate through # whole array (zero-based # indexing is used) for i in range (n): # incrementing or decrementing # difference based on arr[i] # being even or odd, check if # arr[i] is odd if (arr[i] & 1 = = 1 ): difference = difference + 1 else : difference = difference - 1 # adding hash value of 'difference' # to our answer as all the previous # occurrences of the same difference # value will make even-odd subarray # ending at index 'i'. After that, # we will increment hash array for # that 'difference' value for # its occurrence at index 'i'. if # difference is negative then use # hash_negative if (difference < 0 ): ans + = hash_negative[ - difference] hash_negative[ - difference] = hash_negative[ - difference] + 1 # else use hash_positive else : ans + = hash_positive[difference] hash_positive[difference] = hash_positive[difference] + 1 # return total number of # even-odd subarrays return ans # Driver code arr = [ 3 , 4 , 6 , 8 , 1 , 10 , 5 , 7 ] n = len (arr) # Printing total number # of even-odd subarrays print ( "Total Number of Even-Odd subarrays are " + str (countSubarrays(arr, n))) # This code is contributed # by Yatin Gupta |
C#
// C# program to find total // number of even-odd subarrays // present in given array using System; class GFG { // function that returns the // count of subarrays that // contain equal number of // odd as well as even numbers static int countSubarrays( int []arr, int n) { // initialize difference // and answer with 0 int difference = 0; int ans = 0; // create two auxiliary hash // arrays to count frequency // of difference, one array // for non-negative difference // and other array for negative // difference. Size of these // two auxiliary arrays is 'n+1' // because difference can // reach maximum value 'n' as // well as minimum value '-n' int []hash_positive = new int [n + 1]; int []hash_negative = new int [n + 1]; // initialize these // auxiliary arrays with 0 Array.Clear(hash_positive, 0, n + 1); Array.Clear(hash_negative, 0, n + 1); // since the difference is // initially 0, we have to // initialize hash_positive[0] with 1 hash_positive[0] = 1; // for loop to iterate // through whole array // (zero-based indexing is used) for ( int i = 0; i < n ; i++) { // incrementing or decrementing // difference based on // arr[i] being even or odd, // check if arr[i] is odd if ((arr[i] & 1) == 1) difference++; else difference--; // adding hash value of 'difference' // to our answer as all the previous // occurrences of the same difference // value will make even-odd subarray // ending at index 'i'. After that, // we will increment hash array for // that 'difference' value for its // occurrence at index 'i'. if // difference is negative then use // hash_negative if (difference < 0) { ans += hash_negative[-difference]; hash_negative[-difference]++; } // else use hash_positive else { ans += hash_positive[difference]; hash_positive[difference]++; } } // return total number // of even-odd subarrays return ans; } // Driver code static void Main() { int []arr = new int []{3, 4, 6, 8, 1, 10, 5, 7}; int n = arr.Length; // Printing total number // of even-odd subarrays Console.Write( "Total Number of Even-Odd" + " subarrays are " + countSubarrays(arr,n)); } } // This code is contributed by // Manish Shaw(manishshaw1) |
PHP
<?php // PHP program to find total number of // even-odd subarrays present in given array // function that returns the count of subarrays // that contain equal number of odd as well // as even numbers function countSubarrays(& $arr , $n ) { // initialize difference and // answer with 0 $difference = 0; $ans = 0; // create two auxiliary hash arrays to count // frequency of difference, one array for // non-negative difference and other array // for negative difference. Size of these // two auxiliary arrays is 'n+1' because // difference can reach maximum value 'n' // as well as minimum value '-n' $hash_positive = array_fill (0, $n + 1, NULL); $hash_negative = array_fill (0, $n + 1, NULL); // since the difference is initially 0, we // have to initialize hash_positive[0] with 1 $hash_positive [0] = 1; // for loop to iterate through whole // array (zero-based indexing is used) for ( $i = 0; $i < $n ; $i ++) { // incrementing or decrementing difference // based on arr[i] being even or odd, check // if arr[i] is odd if ( $arr [ $i ] & 1 == 1) $difference ++; else $difference --; // adding hash value of 'difference' to our // answer as all the previous occurrences of // the same difference value will make even-odd // subarray ending at index 'i'. After that, we // will increment hash array for that 'difference' // value for its occurrence at index 'i'. if // difference is negative then use hash_negative if ( $difference < 0) { $ans += $hash_negative [- $difference ]; $hash_negative [- $difference ]++; } // else use hash_positive else { $ans += $hash_positive [ $difference ]; $hash_positive [ $difference ]++; } } // return total number of even-odd // subarrays return $ans ; } // Driver code $arr = array (3, 4, 6, 8, 1, 10, 5, 7); $n = sizeof( $arr ); // Printing total number of even-odd // subarrays echo "Total Number of Even-Odd subarrays" . " are " . countSubarrays( $arr , $n ); // This code is contributed by ita_c ?> |
Javascript
<script> // Javascript program to find total // number of even-odd subarrays // present in given array // function that returns the // count of subarrays that // contain equal number of // odd as well as even numbers function countSubarrays(arr, n) { // initialize difference // and answer with 0 let difference = 0; let ans = 0; // create two auxiliary hash // arrays to count frequency // of difference, one array // for non-negative difference // and other array for negative // difference. Size of these // two auxiliary arrays is 'n+1' // because difference can // reach maximum value 'n' as // well as minimum value '-n' // initialize these // auxiliary arrays with 0 let hash_positive = new Array(n + 1); let hash_negative = new Array(n + 1); for (let i=0;i<n+1;i++) { hash_positive[i] = 0; hash_negative[i] = 0; } // since the difference is // initially 0, we have to // initialize hash_positive[0] with 1 hash_positive[0] = 1; // for loop to iterate // through whole array // (zero-based indexing is used) for (let i = 0; i < n; i++) { // incrementing or decrementing // difference based on // arr[i] being even or odd, // check if arr[i] is odd if ((arr[i] & 1) == 1) { difference++; } else { difference--; } // adding hash value of 'difference' // to our answer as all the previous // occurrences of the same difference // value will make even-odd subarray // ending at index 'i'. After that, // we will increment hash array for // that 'difference' value for its // occurrence at index 'i'. if // difference is negative then use // hash_negative if (difference < 0) { ans += hash_negative[-difference]; hash_negative[-difference]++; } // else use hash_positive else { ans += hash_positive[difference]; hash_positive[difference]++; } } // return total number // of even-odd subarrays return ans; } // Driver code let arr = [3, 4, 6, 8, 1, 10, 5, 7]; let n = arr.length; // Printing total number // of even-odd subarrays document.write( "Total Number of Even-Odd" + " subarrays are " + countSubarrays(arr, n)); // This code is contributed by avanitrachhadiya2155 </script> |
Total Number of Even-Odd subarrays are 7
Complexity Analysis:
- Time Complexity: O(N), where N is the number of integers.
- Auxiliary Space: O(2N), where N is the number of integers.
Another approach:- This approach is much simpler and easy to understand. It can be solved easily by using the same concept of
Count subarrays with equal numbers of 1’s and 0’s. Change the odd elements to -1 and even elements to 1. And now count the ways to find sum=0;
Implementation:
C++
#include <bits/stdc++.h> using namespace std; // function to count the subarrays having equal number of // even and odd long long int countSubarrays( int arr[], int n) { long long int k = 0, currsum = 0, count = 0; unordered_map< int , int > map; for ( int i = 0; i < n; i++) { if (arr[i] % 2 == 0) arr[i] = 1; else if (arr[i] % 2 != 0) arr[i] = -1; currsum += arr[i]; if (currsum == k) count++; if (map.find(currsum - k) != map.end()) { count += map[currsum - k]; } map[currsum]++; } // return total number of even-odd subarrays return count; } // Driver code int main() { int arr[] = { 3, 4, 6, 8, 1, 10, 5, 7 }; int n = sizeof (arr) / sizeof (arr[0]); // Printing total number of even-odd subarrays cout << "Total Number of Even-Odd subarrays" " are " << countSubarrays(arr, n); } // this code is contributed by naveen shah |
Java
/*package whatever //do not write package name here */ import java.util.*; class GFG { // function to count the subarrays having equal number of // even and odd static long countSubarrays( int arr[], int n) { long k = 0 , currsum = 0 , count = 0 ; HashMap<Long, Integer> map = new HashMap<>(); for ( int i = 0 ; i < n; i++) { if (arr[i] % 2 == 0 ) arr[i] = 1 ; else if (arr[i] % 2 != 0 ) arr[i] = - 1 ; currsum += arr[i]; if (currsum == k) count++; if (map.containsKey(currsum - k)) { count += map.get(currsum - k); } map.put(currsum,map.getOrDefault(currsum, 0 )+ 1 ); } // return total number of even-odd subarrays return count; } public static void main (String[] args) { int arr[] = { 3 , 4 , 6 , 8 , 1 , 10 , 5 , 7 }; int n = arr.length; // Printing total number of even-odd subarrays System.out.println( "Total Number of Even-Odd subarrays are " + countSubarrays(arr, n)); } } |
Python3
# function to count the subarrays having equal number of # even and odd def countSubarrays(arr, n): k = 0 currsum = 0 count = 0 map = {} for i in range (n): if arr[i] % 2 = = 0 : arr[i] = 1 else : arr[i] = - 1 currsum + = arr[i] if currsum = = k: count + = 1 if currsum - k in map : count + = map [currsum - k] if currsum not in map : map [currsum] = 1 else : map [currsum] + = 1 # return total number of even-odd subarrays return count arr = [ 3 , 4 , 6 , 8 , 1 , 10 , 5 , 7 ] n = len (arr) # Printing total number of even-odd subarrays print ( "Total Number of Even-Odd subarrays are" , countSubarrays(arr, n)) # this code is contributed by akashish__ |
C#
// Include namespace system using System; using System.Collections.Generic; using System.Collections; public class GFG { // function to count the subarrays having equal number of // even and odd public static long countSubarrays( int [] arr, int n) { var k = 0; var currsum = 0; var count = 0; var map = new Dictionary< long , int >(); for ( int i = 0; i < n; i++) { if (arr[i] % 2 == 0) { arr[i] = 1; } else if (arr[i] % 2 != 0) { arr[i] = -1; } currsum += arr[i]; if (currsum == k) { count++; } if (map.ContainsKey(currsum - k)) { count += map[currsum - k]; } map[currsum] = (map.ContainsKey(currsum) ? map[currsum] : 0) + 1; } // return total number of even-odd subarrays return count; } public static void Main(String[] args) { int [] arr = {3, 4, 6, 8, 1, 10, 5, 7}; var n = arr.Length; // Printing total number of even-odd subarrays Console.WriteLine( "Total Number of Even-Odd subarrays are " + GFG.countSubarrays(arr, n).ToString()); } } // This code is contributed by aadityaburujwale. |
Javascript
// JavaScript Code implementation // function to count the subarrays having equal number of // even and odd function countSubarrays(arr, n){ var k = 0, currsum = 0, count = 0; var map = new Map(); for (let i=0;i<n;i++){ if (arr[i]%2==0){ arr[i] = 1; } else if (arr[i]%2!=0){ arr[i] = -1; } currsum += arr[i]; if (currsum == k){ count++; } if (map.has(currsum-k)){ count += map.get(currsum-k); } var temp = (map.has(currsum) ? map.get(currsum) : 0) + 1; map.set(currsum, temp); } // return total number of even-odd subarrays return count; } var arr = [ 3, 4, 6, 8, 1, 10, 5, 7 ]; var n = arr.length; // Printing total number of even-odd subarrays console.log( "Total Number of Even-Odd subarrays are " + countSubarrays(arr, n)); // This code is contributed by lokesh. |
Total Number of Even-Odd subarrays are 7
Complexity Analysis:
- Time Complexity: O(N).
- Auxiliary Space: O(N).
Please Login to comment...