Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count pairs with Bitwise XOR as ODD number

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array of N integers, the task is to find the number of pairs (i, j) such that A[i] ^ A[j] is odd.
Examples: 
 

Input : N = 5
        A[] =  { 5, 4, 7, 2, 1}
Output :6
Since pair of A[] =
( 5, 4 ) = 1( 5, 7 ) = 2( 5, 2 ) = 7( 5, 1 ) = 4
( 4, 7 ) = 3( 4, 2 ) = 6( 4, 1 ) = 5
( 7, 2 ) = 5( 7, 1 ) = 6
( 2, 1 ) = 3
Total XOR ODD pair  = 6

Input : N = 7
        A[] = { 7, 2, 8, 1, 0, 5, 11 }
Output :12
Since pair of A[] =
( 7, 2 ) = 5( 7, 8 ) = 15( 7, 1 ) = 6( 7, 0 ) = 7( 7, 5 ) = 2( 7, 11 ) = 12
( 2, 8 ) = 10( 2, 1 ) = 3( 2, 0 ) = 2( 2, 5 ) = 7( 2, 11 ) = 9
( 8, 1 ) = 9( 8, 0 ) = 8( 8, 5 ) = 13( 8, 11 ) = 3
( 1, 0 ) = 1( 1, 5 ) = 4( 1, 11 ) = 10
( 0, 5 ) = 5( 0, 11 ) = 11
( 5, 11 ) = 14

 

A naive approach is to check for every pair and print the count of pairs.
Below is the implementation of the above approach: 
 

C++




// C++ program to count pairs
// with XOR giving a odd number
#include <iostream>
using namespace std;
 
// Function to count number of odd pairs
int findOddPair(int A[], int N)
{
    int i, j;
 
    // variable for counting odd pairs
    int oddPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++) {
        for (j = i + 1; j < N; j++) {
 
            // find XOR operation
            // check odd or even
            if ((A[i] ^ A[j]) % 2 != 0)
                oddPair++;
        }
        cout << endl;
    }
 
    // return number of odd pair
    return oddPair;
}
 
// Driver Code
int main()
{
 
    int A[] = { 5, 4, 7, 2, 1 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // calling function findOddPair
    // and print number of odd pair
    cout << findOddPair(A, N) << endl;
 
    return 0;
}


Java




// Java program to count pairs
// with XOR giving a odd number
 
class GFG
{
     
// Function to count
// number of odd pairs
static int findOddPair(int A[],
                       int N)
{
    int i, j;
 
    // variable for counting
    // odd pairs
    int oddPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++)
    {
        for (j = i + 1; j < N; j++)
        {
 
            // find XOR operation
            // check odd or even
            if ((A[i] ^ A[j]) % 2 != 0)
                oddPair++;
        }
     
    }
 
    // return number
    // of odd pair
    return oddPair;
}
 
// Driver Code
public static void main(String args[])
{
    int A[] = { 5, 4, 7, 2, 1 };
    int N = A.length;
 
    // calling function findOddPair
    // and print number of odd pair
    System.out.println(findOddPair(A, N));
}
}
 
// This code is contributed
// by Kirti_Mangal


Python3




# Python3 program to count pairs
# with XOR giving a odd number
 
# Function to count number of odd pairs
def findOddPair(A, N) :
 
    # variable for counting odd pairs
    oddPair = 0
 
    # find all pairs
    for i in range(0, N) :
        for j in range(i+1, N) :
 
            # find XOR operation
            # check odd or even
            if ((A[i] ^ A[j]) % 2 != 0):
                oddPair+=1
 
    # return number of odd pair
    return oddPair
 
# Driver Code
if __name__=='__main__':
    A = [5, 4, 7, 2, 1 ]
    N = len(A)
 
# calling function findOddPair
# and print number of odd pair
    print(findOddPair(A, N))
 
# This code is contributed by Smitha Dinesh Semwal


C#




// C# program to count pairs
// with XOR giving a odd number
using System;
 
class GFG
{
     
// Function to count
// number of odd pairs
static int findOddPair(int[] A,
                    int N)
{
    int i, j;
 
    // variable for counting
    // odd pairs
    int oddPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++)
    {
        for (j = i + 1; j < N; j++)
        {
 
            // find XOR operation
            // check odd or even
            if ((A[i] ^ A[j]) % 2 != 0)
                oddPair++;
        }
     
    }
 
    // return number
    // of odd pair
    return oddPair;
}
 
// Driver Code
public static void Main()
{
    int[] A = { 5, 4, 7, 2, 1 };
    int N = A.Length;
 
    // calling function findOddPair
    // and print number of odd pair
    Console.WriteLine(findOddPair(A, N));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)
 
 
# calling function findOddPair
# and print number of odd pair
print(findOddPair(a, n))


PHP




<?php
//PHP  program to count pairs
// with XOR giving a odd number
 
// Function to count number of odd pairs
 
function  findOddPair($A, $N)
{
     $i; $j;
 
    // variable for counting odd pairs
     $oddPair = 0;
 
    // find all pairs
    for ($i = 0; $i < $N; $i++) {
        for ($j = $i + 1; $j < $N; $j++) {
 
            // find XOR operation
            // check odd or even
            if (($A[$i] ^ $A[$j]) % 2 != 0)
                $oddPair++;
        }
         
    }
 
    // return number of odd pair
    return $oddPair;
}
 
// Driver Code
 
    $A = array( 5, 4, 7, 2, 1 );
    $N = sizeof($A) / sizeof($A[0]);
 
    // calling function findOddPair
    // and print number of odd pair
    echo  findOddPair($A, $N),"\n";
 
     
// This Code is Contributed by ajit   
?>


Javascript




<script>
// JavaScript program to count pairs
// with XOR giving a odd number 
 
// Function to count number of odd pairs
function findOddPair(A, N)
{
    let i, j;
 
    // variable for counting odd pairs
    let oddPair = 0;
 
    // find all pairs
    for (i = 0; i < N; i++) {
        for (j = i + 1; j < N; j++) {
 
            // find XOR operation
            // check odd or even
            if ((A[i] ^ A[j]) % 2 != 0)
                oddPair++;
        }
    }
 
    // return number of odd pair
    return oddPair;
}
 
// Driver Code
 
 
    let A = [ 5, 4, 7, 2, 1 ];
    let N = A.length;
 
    // calling function findOddPair
    // and print number of odd pair
    document.write(findOddPair(A, N) + "<br>");
 
// This code is contributed by Surbhi Tyagi.
 
</script>


OUTPUT: 

6

Time Complexity: O(N^2) as two nested loops are being used.
Auxiliary Space: O(1), as constant space is being used by the algorithm.

An efficient solution is to count the even numbers. Then return count * (N – count). 
 

C++




// C++ program to count pairs
// with XOR giving a odd number
#include <iostream>
using namespace std;
 
// Function to count number of odd pairs
int findOddPair(int A[], int N)
{
    int i, count = 0;
 
    // find all pairs
    for (i = 0; i < N; i++) {
        if (A[i] % 2 == 0)
            count++;
    }
 
    // return number of odd pair
    return count * (N - count);
}
 
// Driver Code
int main()
{
    int a[] = { 5, 4, 7, 2, 1 };
    int n = sizeof(a) / sizeof(a[0]);
 
    // calling function findOddPair
    // and print number of odd pair
    cout << findOddPair(a, n) << endl;
 
    return 0;
}


Java




// Java program to count pairs
// with XOR giving a odd number
class GFG
{
// Function to count
// number of odd pairs
static int findOddPair(int A[],
                       int N)
{
    int i, count = 0;
 
    // find all pairs
    for (i = 0; i < N; i++)
    {
        if (A[i] % 2 == 0)
            count++;
    }
 
    // return number of odd pair
    return count * (N - count);
}
 
// Driver Code
public static void main(String[] arg)
{
    int a[] = { 5, 4, 7, 2, 1 };
    int n = a.length ;
 
    // calling function findOddPair
    // and print number of odd pair
    System.out.println(findOddPair(a, n));
}
}
 
// This code is contributed
// by Smitha


Python3




# Python3 program to count pairs
# with XOR giving a odd number
 
# Function to count number of odd pairs
def findOddPair(A, N) :
 
    count = 0
 
    # find all pairs
    for i in range(0 , N) :
        if (A[i] % 2 == 0) :
            count+=1
     
    # return number of odd pair
    return count * (N - count)
 
# Driver Code
if __name__=='__main__':
    a = [5, 4, 7, 2, 1]
    n = len(a)
    print(findOddPair(a,n))
 
# this code is contributed by Smitha Dinesh Semwal


C#




// C# program to count pairs
// with XOR giving a odd number
using System;
 
class GFG
{
// Function to count
// number of odd pairs
static int findOddPair(int []A,
                       int N)
{
    int i, count = 0;
 
    // find all pairs
    for (i = 0; i < N; i++)
    {
        if (A[i] % 2 == 0)
            count++;
    }
 
    // return number of odd pair
    return count * (N - count);
}
 
// Driver Code
public static void Main()
{
    int []a = { 5, 4, 7, 2, 1 };
    int n = a.Length ;
 
    // calling function findOddPair
    // and print number of odd pair
    Console.Write(findOddPair(a, n));
}
}
 
// This code is contributed
// by Smitha


PHP




<?php
// PHP program to count pairs
// with XOR giving a odd number
 
// Function to count number
// of odd pairs
function findOddPair($A, $N)
{
    $count = 0;
 
    // find all pairs
    for ($i = 0; $i < $N; $i++)
    {
        if ($A[$i] % 2 == 0)
            $count++;
    }
 
    // return number of odd pair
    return $count * ($N - $count);
}
 
// Driver Code
$a = array( 5, 4, 7, 2, 1 );
$n = count($a);
 
// calling function findOddPair
// and print number of odd pair
echo( findOddPair($a, $n));
 
// This code is contributed
// by Smitha
?>


Javascript




<script>
 
// Javascript program to count pairs
// with XOR giving a odd number
 
// Function to count number of odd pairs
function findOddPair(A, N)
{
    let i, count = 0;
 
    // find all pairs
    for (i = 0; i < N; i++) {
        if (A[i] % 2 == 0)
            count++;
    }
 
    // return number of odd pair
    return count * (N - count);
}
 
// Driver Code
    let a = [ 5, 4, 7, 2, 1 ];
    let n = a.length;
 
    // calling function findOddPair
    // and print number of odd pair
    document.write(findOddPair(a, n));
 
</script>


Output: 

6

Time Complexity: O(N), since one traversal of the array is required to complete all operations.
Auxiliary Space: O(1), as constant space is being used.


My Personal Notes arrow_drop_up
Last Updated : 02 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials