Skip to content
Related Articles

Related Articles

Count pairs of vertices in Tree such that distance between them is even

View Discussion
Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 06 Jun, 2022
View Discussion
Improve Article
Save Article

Given a tree of N vertices, the task is to find the number of pairs of vertices such that the distance between them is even but cannot be 0

Examples:

Input: N = 5, Edges = [ [1, 0], [2, 1], [3, 1], [4, 3] ]

                        0
                     /          
                  1           
               /    \ 
            2        3
                        \
                         4 

Output: 4
Explanation: There are four pairs of vertices such that the distance between them is even.
They are [ 0, 2 ], [0, 3], [3, 2] and [1, 4].

Input: N = 6, Edges: [[1, 0], [2, 1], [3, 1], [4, 2], [5, 3]]

                           0
                        /         
                     1            
               /       \
           2            3
        /             /
     4              5
Output: 6
Explanation: There are 6 pairs of vertices such that the distance between them is even. They are [0, 2], [4, 1], [3, 0], [4, 5], [1, 5] and [2, 3].

 

Naive Approach: The naive approach is to try all possible pairs of vertices, find the distance between them and check if the distance is even. Follow the steps mentioned below to solve the problem:

  • Iterate over all the vertices for i = 0 to N-1:
    • Iterate from j = i+1 to N-1:
      • Find the distance from i to j using DFS.
      • If the distance is even then increment the count of pairs.
  • Return the count.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the distance
void dfs(int i, int par,
         vector<vector<int> >& adj,
         vector<int>& dis)
{
    // Iterate over all the edges of vertex i
    for (int j : adj[i]) {
 
        // If 'j' is not the parent of 'i'.
        if (j != par) {
 
            // Store the distance
            // from root till 'j'.
            dis[j] = dis[i] + 1;
 
            // Recurse for the child 'j'.
            dfs(j, i, adj, dis);
        }
    }
}
 
// Function to count pairs
int countPairs(int n,
               vector<vector<int> >& edges)
{
    // Stores the final answer.
    int ans = 0;
 
    // Stores the adjacency List of the tree.
    vector<vector<int> > adj(n);
 
    for (int i = 0; i < n - 1; ++i) {
 
        // Add the edge in the adjacency list.
        adj[edges[i][0]].push_back(edges[i][1]);
        adj[edges[i][1]].push_back(edges[i][0]);
    }
 
    // Stores the distance from root till 'i'.
    vector<int> dis(n);
 
    // Iterate over all 'u'
    // of the pair ('u', 'v').
    for (int i = 0; i < n; ++i) {
 
        // Set all the values
        // of 'dis[i]' to '0'.
        fill(dis.begin(), dis.end(), 0);
 
        // Do a dfs with 'i' as
        // the root of the tree.
        dfs(i, -1, adj, dis);
 
        // Iterate over the other end
        // of the pair.
        for (int j = i + 1; j < n; ++j) {
 
            // If the distance is even.
            if (dis[j] % 2 == 0) {
 
                // Increment 'ans' by 1.
                ans++;
            }
        }
    }
 
    // Return the answer 'ans'.
    return ans;
}
 
// Driver Code
int main()
{
    int N = 5;
    vector<vector<int> > edges
        = { { 1, 0 }, { 2, 1 }, { 3, 1 }, { 4, 3 } };
 
    // Function call
    cout << countPairs(N, edges);
    return 0;
}


Java




// Java code to implement above approach
import java.util.*;
 
public class Main
{
 
  // Function to find the distance
  static void dfs(int i, int par,
                  ArrayList <ArrayList<Integer> > adj,
                  ArrayList <Integer> dis)
  {
    // Iterate over all the edges of vertex i
    for (int j : adj.get(i) ) {
 
      // If 'j' is not the parent of 'i'.
      if (j != par) {
 
        // Store the distance
        // from root till 'j'.
        dis.set(j, dis.get(i) + 1);
 
        // Recurse for the child 'j'.
        dfs(j, i, adj, dis);
      }
    }
  }
 
  // Function to count pairs
  static int countPairs(int n,
                        int[][] edges)
  {
    // Stores the final answer.
    int ans = 0;
 
    // Stores the adjacency List of the tree.
    ArrayList <ArrayList<Integer> > adj =
      new ArrayList<ArrayList<Integer> >(n);
    for (int i = 0; i < n; i++)
      adj.add(new ArrayList<Integer>());
 
    for (int i = 0; i < n - 1; ++i) {
 
      // Add the edge in the adjacency list.
      adj.get(edges[i][0]).add(edges[i][1]);
      adj.get(edges[i][1]).add(edges[i][0]);
    }
 
    // Iterate over all 'u'
    // of the pair ('u', 'v').
    for (int i = 0; i < n; ++i) {
 
      ArrayList <Integer> dis =
        new ArrayList<Integer> (n);;
      // Do a dfs with 'i' as
      // the root of the tree.
      for (int j = 0; j < n; ++j) {
        dis.add(0);
      }
      dfs(i, -1, adj, dis);
 
      // Iterate over the other end
      // of the pair.
      for (int j = i + 1; j < n; ++j) {
 
        // If the distance is even.
        if (dis.get(j) % 2 == 0) {
 
          // Increment 'ans' by 1.
          ans++;
        }
      }
    }
 
    // Return the answer 'ans'.
    return ans;
  }
  // Driver Code
  public static void main(String args[])
  {
    int N = 5;
 
    // array of edges
    int[][] edges
      = { { 1, 0 }, { 2, 1 }, { 3, 1 }, { 4, 3 } };
 
    // Function call
    System.out.println( countPairs(N, edges) );
 
  }
}
 
// This code is contributed by Sachin Sahara (sachin801)


Javascript




<script>
 
// JavaScript code to implement the approach
 
// Function to find the distance
function dfs(i, par, adj, dis)
{
    // Iterate over all the edges of vertex i
    for (let j of adj[i]) {
 
        // If 'j' is not the parent of 'i'.
        if (j != par) {
 
            // Store the distance
            // from root till 'j'.
            dis[j] = dis[i] + 1;
 
            // Recurse for the child 'j'.
            dfs(j, i, adj, dis);
        }
    }
}
 
// Function to count pairs
function countPairs(n,edges)
{
    // Stores the final answer.
    let ans = 0;
 
    // Stores the adjacency List of the tree.
    let adj = new Array(n);
    for(let i=0;i<N;i++){
        adj[i] = new Array();
    }
 
    for (let i = 0; i < n - 1; ++i) {
        
        // Add the edge in the adjacency list.
        adj[edges[i][0]].push(edges[i][1]);
        adj[edges[i][1]].push(edges[i][0]);
    }
 
    // Stores the distance from root till 'i'.
    let dis = new Array(n);;
 
    // Iterate over all 'u'
    // of the pair ('u', 'v').
    for (let i = 0; i < n; ++i) {
 
        // Set all the values
        // of 'dis[i]' to '0'.
        dis.fill(0);
 
        // Do a dfs with 'i' as
        // the root of the tree.
        dfs(i, -1, adj, dis);
 
        // Iterate over the other end
        // of the pair.
        for (let j = i + 1; j < n; ++j) {
 
            // If the distance is even.
            if (dis[j] % 2 == 0) {
 
                // Increment 'ans' by 1.
                ans++;
            }
        }
    }
 
    // Return the answer 'ans'.
    return ans;
}
 
// Driver Code
 
let N = 5;
let edges = [ [ 1, 0 ], [ 2, 1 ], [ 3, 1 ], [ 4, 3 ] ];
 
// Function call
document.write(countPairs(N, edges));
 
// This code is contributed by shinjanpatra
 
</script>


Output

4

Time Complexity: O(N2)
Auxiliary Space: O(N)

Efficient Approach: The efficient approach to solve the problem is based on the concept of bipartite graph as shown below.

Every tree is a bipartite graph. So all the vertices are part of one of the two bipartite sets (say L and R). 
Any pair having both the values from different sets have an odd distance between them and pairs with vertices from the same set have even distance between them.

Based on the above observation it is clear that the total number of pairs is the possible pairs formed using vertices from the same set i.e., (xC2) + (yC2), where [ nC2 = n * (n – 1)/2, x is the size of set L and y is the size of set R ]. Follow the steps mentioned below to solve the problem.

  • Declare and initialize two variables x and y to 0 to store the size of the bipartite sets.
  • Make root a part of one of the bipartite set (say L).
  • Initialize an array (say dis[]) to store the distances from 0.
  • Start a DFS or BFS from the vertex 0:
    • At each instant, iterate through all the children, and if we have not visited this child yet (let’s say the child is j), then:
      • Increment its distance as dis[current node] = distance[parent] + 1.
      • If it is even, increment x and make it part of set L. Otherwise, increment y and make it part of set R.
    • Recursively do the same for its children.
  • Finally, return the value of xC2 + yC2.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Dfs function
void dfs(int i, int par,
         vector<vector<int> >& adj,
         vector<int>& dis)
{
    // Iterate over all edges of vertex 'i'.
    for (int j : adj[i]) {
 
        // If 'j' is not the parent of 'i'.
        if (j != par) {
 
            // Store the distance
            // from root till 'j'.
            dis[j] = dis[i] + 1;
 
            // Recurse for the child 'j'.
            dfs(j, i, adj, dis);
        }
    }
}
 
// Function to count the vertices
int countPairs(int n,
               vector<vector<int> >& edges)
{
    // Stores the adjacency List of the tree.
    vector<vector<int> > adj(n);
    for (int i = 0; i < n - 1; ++i) {
 
        // Add the edge in the adjacency list.
        adj[edges[i][0]].push_back(edges[i][1]);
        adj[edges[i][1]].push_back(edges[i][0]);
    }
 
    // Stores the distance from root till 'i'.
    vector<int> dis(n);
 
    // Dfs with '0' as the root of the tree.
    dfs(0, -1, adj, dis);
 
    // To store the size of set 'L'
    // size of set 'R'.
    int x = 0, y = 0;
 
    // Iterate over all the vertices
    // of the tree.
    for (int i = 0; i < n; ++i) {
 
        // If 'i' is at an even depth.
        if (dis[i] % 2 == 0) {
 
            // Increment the size of set 'L'.
            x++;
        }
        else {
 
            // Increment the size of set 'R'.
            y++;
        }
    }
 
    // Return the answer.
    return x * (x - 1) / 2 + y * (y - 1) / 2;
}
 
// Driver Code
int main()
{
    int N = 5;
    vector<vector<int> > edges
        = { { 1, 0 }, { 2, 1 }, { 3, 1 }, { 4, 3 } };
 
    // Function call
    cout << countPairs(N, edges);
    return 0;
}


Java




// Java code to implement above approach
 
import java.util.*;
 
public class Main {
    // Function to find the distance
    static void dfs(int i, int par,
            ArrayList <ArrayList<Integer> > adj,
            ArrayList <Integer> dis)
    {
        // Iterate over all the edges of vertex i
        for (int j : adj.get(i) ) {
 
            // If 'j' is not the parent of 'i'.
            if (j != par) {
 
                // Store the distance
                // from root till 'j'.
                dis.set(j, dis.get(i) + 1);
 
                // Recurse for the child 'j'.
                dfs(j, i, adj, dis);
            }
        }
    }
 
    // Function to count pairs
    static int countPairs(int n,
                int[][] edges)
    {
        // Stores the adjacency List of the tree.
        ArrayList <ArrayList<Integer> > adj =
                        new ArrayList<ArrayList<Integer> >(n);
        for (int i = 0; i < n; i++)
            adj.add(new ArrayList<Integer>());
 
        for (int i = 0; i < n - 1; ++i) {
 
            // Add the edge in the adjacency list.
            adj.get(edges[i][0]).add(edges[i][1]);
            adj.get(edges[i][1]).add(edges[i][0]);
        }
 
        // Stores the distance from root till 'i'.
        ArrayList <Integer> dis = new ArrayList <Integer> (n);
        for (int j = 0; j < n; ++j) {
            dis.add(0);
        }
        // Dfs with '0' as the root of the tree.
        dfs(0, -1, adj, dis);
 
        // To store the size of set 'L'
        // size of set 'R'.
        int x = 0, y = 0;
 
        // Iterate over all the vertices
        // of the tree.
        for (int i = 0; i < n; ++i) {
 
            // If 'i' is at an even depth.
            if (dis.get(i) % 2 == 0) {
 
                // Increment the size of set 'L'.
                x++;
            }
            else {
 
                // Increment the size of set 'R'.
                y++;
            }
        }
 
        // Return the answer.
        return x * (x - 1) / 2 + y * (y - 1) / 2;
    }
 
    // Driver Code
    public static void main(String args[]) {
        int N = 5;
        // array of edges
        int[][] edges
            = { { 1, 0 }, { 2, 1 }, { 3, 1 }, { 4, 3 } };
 
        // Function call
        System.out.println( countPairs(N, edges) );
         
    }
}
 
// This code is contributed by Sachin Sahara (sachin801)


Python3




# python3 code to implement the approach
 
# Dfs function
def dfs(i, par, adj, dis):
 
    # Iterate over all edges of vertex 'i'.
    for j in adj[i]:
 
        # If 'j' is not the parent of 'i'.
        if (j != par):
 
            # Store the distance
            # from root till 'j'.
            dis[j] = dis[i] + 1
 
            # Recurse for the child 'j'.
            dfs(j, i, adj, dis)
 
# Function to count the vertices
def countPairs(n, edges):
 
    # Stores the adjacency List of the tree.
    adj = [[] for _ in range(n)]
    for i in range(0, n-1):
 
        # Add the edge in the adjacency list.
        adj[edges[i][0]].append(edges[i][1])
        adj[edges[i][1]].append(edges[i][0])
 
    # Stores the distance from root till 'i'.
    dis = [0 for _ in range(n)]
 
    # Dfs with '0' as the root of the tree.
    dfs(0, -1, adj, dis)
 
    # To store the size of set 'L'
    # size of set 'R'.
    x, y = 0, 0
 
    # Iterate over all the vertices
    # of the tree.
    for i in range(0, n):
 
        # If 'i' is at an even depth.
        if (dis[i] % 2 == 0):
 
            # Increment the size of set 'L'.
            x += 1
 
        else:
 
            # Increment the size of set 'R'.
            y += 1
 
    # Return the answer.
    return x * (x - 1) // 2 + y * (y - 1) // 2
 
 
# Driver Code
if __name__ == "__main__":
 
    N = 5
    edges = [[1, 0], [2, 1], [3, 1], [4, 3]]
 
    # Function call
    print(countPairs(N, edges))
 
# This code is contributed by rakeshsahni


Output

4

Time Complexity: O(N)
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!