Count pairs in an array such that both elements has equal set bits
Given an array arr with unique elements, the task is to count the total number of pairs of elements that have equal set bits count.
Examples:
Input: arr[] = {2, 5, 8, 1, 3}
Output: 4
Set bits counts for {2, 5, 8, 1, 3} are {1, 2, 1, 1, 2}
All pairs with same set bits count are {2, 8}, {2, 1}, {5, 3}, {8, 1}
Input: arr[] = {1, 11, 7, 3}
Output: 1
Only possible pair is {11, 7}
Approach:
- Traverse the array from left to right and count total number of set bits of each integer.
- Use a map to store the number of elements with same count of set bits with set bits as key, and count as value.
- Then iterator through map elements, and calculate how many two element pairs can be formed from n elements (for each element of the map) i.e. (n * (n-1)) / 2.
- Final result will be the sum of output from the previous step for every element of the map.
Below is the implementation of the of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Function to count all pairs // with equal set bits count int totalPairs( int arr[], int n) { // map to store count of elements // with equal number of set bits map< int , int > m; for ( int i = 0; i < n; i++) { // inbuilt function that returns the // count of set bits of the number m[__builtin_popcount(arr[i])]++; } map< int , int >::iterator it; int result = 0; for (it = m.begin(); it != m.end(); it++) { // there can be (n*(n-1)/2) unique two- // element pairs to choose from n elements result += (*it).second * ((*it).second - 1) / 2; } return result; } // Driver code int main() { int arr[] = { 7, 5, 3, 9, 1, 2 }; int n = sizeof (arr) / sizeof (arr[0]); cout << totalPairs(arr, n); return 0; } |
Java
import java.util.*; class GFG { /* Function to get no of set bits in binary representation of passed binary no. */ static int countSetBits( int n) { int count = 0 ; while (n > 0 ) { n &= (n - 1 ) ; count++; } return count; } // Function to count all pairs // with equal set bits count static int totalPairs( int arr[], int n) { // map to store count of elements // with equal number of set bits HashMap<Integer, Integer> m = new HashMap<>(); for ( int i = 0 ; i < n; i++) { // function that returns the // count of set bits of the number int count = countSetBits(arr[i]); if (m.containsKey(count)) m.put(count, m.get(count) + 1 ); else m.put(count, 1 ); } int result = 0 ; for (Map.Entry<Integer, Integer> entry : m.entrySet()) { int value = entry.getValue(); // there can be (n*(n-1)/2) unique two- // element pairs to choose from n elements result += ((value * (value - 1 )) / 2 ); } return result; } public static void main (String[] args) { int arr[] = { 7 , 5 , 3 , 9 , 1 , 2 }; int n = arr.length; System.out.println(totalPairs(arr, n)); } } |
Python3
# Python3 implementation of the above approach # Function to count all pairs # with equal set bits count def totalPairs(arr, n): # map to store count of elements # with equal number of set bits m = dict () for i in range (n): # inbuilt function that returns the # count of set bits of the number x = bin (arr[i]).count( '1' ) m[x] = m.get(x, 0 ) + 1 ; result = 0 for it in m: # there can be (n*(n-1)/2) unique two- # element pairs to choose from n elements result + = (m[it] * (m[it] - 1 )) / / 2 return result # Driver code arr = [ 7 , 5 , 3 , 9 , 1 , 2 ] n = len (arr) print (totalPairs(arr, n)) # This code is contributed by mohit kumar |
C#
// C# program to rearrange a string so that all same // characters become atleast d distance away using System; using System.Collections.Generic; class GFG { /* Function to get no of set bits in binary representation of passed binary no. */ static int countSetBits( int n) { int count = 0; while (n > 0) { n &= (n - 1) ; count++; } return count; } // Function to count all pairs // with equal set bits count static int totalPairs( int []arr, int n) { // map to store count of elements // with equal number of set bits Dictionary< int , int > mp = new Dictionary< int , int >(); for ( int i = 0 ; i < n; i++) { // function that returns the // count of set bits of the number int count = countSetBits(arr[i]); if (mp.ContainsKey(count)) { var val = mp[count]; mp.Remove(count); mp.Add(count, val + 1); } else { mp.Add(count, 1); } } int result = 0; foreach (KeyValuePair< int , int > entry in mp){ int values = entry.Value; // there can be (n*(n-1)/2) unique two- // element pairs to choose from n elements result += ((values * (values -1)) / 2); } return result; } // Driver code public static void Main (String[] args) { int []arr = { 7, 5, 3, 9, 1, 2 }; int n = arr.Length; Console.WriteLine(totalPairs(arr, n)); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript implementation of above approach /* Function to get no of set bits in binary representation of passed binary no. */ function countSetBits(n) { var count = 0; while (n > 0) { n &= (n - 1) ; count++; } return count; } // Function to count all pairs // with equal set bits count function totalPairs(arr, n) { // map to store count of elements // with equal number of set bits var m = new Map(); for ( var i = 0; i < n; i++) { // inbuilt function that returns the // count of set bits of the number if (m.has(arr[i])) { m.set(countSetBits(arr[i]), m.get(countSetBits(arr[i]))+1); } else { m.set(countSetBits(arr[i]), 1); } } var result = 0; m.forEach((value, key) => { // there can be (n*(n-1)/2) unique two- // element pairs to choose from n elements result += parseInt(key * (key - 1) / 2); }); return result; } // Driver code var arr = [7, 5, 3, 9, 1, 2 ]; var n = arr.length; document.write( totalPairs(arr, n)); </script> |
Output:
4