Skip to content
Related Articles

Related Articles

Count of unique subsets from a set having repeated elements

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 27 May, 2022

Given an array arr[] of size N. The task is to count the number of unique subsets. 

Examples:

Input: arr[] = {1, 2, 2}
Output: 6
Explanation: Total possible subsets of this set  = 2³= 8. 
Following are the all 8 subsets formed from arr[].
{}, {1}, {2}, {2}, {1, 2}, {1, 2}, {2, 2}, {1, 2, 2}. 
These are all possible subsets out of which {2} and {1, 2} are repeated.
Therefore there are only 6 unique subsets of given set.

Input: arr[] = {1, 3, 3, 4, 4, 4}
Output: 24

 

Naive Approach: In the basic approach, create all the subsets of the set and keep storing them in a std::set that stores only unique elements. But this isn’t a time-efficient approach. 

Time Complexity: O(2N)
Auxiliary Space: O(N * 2N-1)

Efficient Approach: It can be observed that it is not required to find all the subsets. The only concern is to find the count of unique subsets. On the basis of how many times each element is contributing in unique subsets, it can be done by mathematical manipulations and finally ending up with a formula.

Follow the observation below to arrive at the formula.

For each unique value vali say the frequency of that element is freq[vali].
So each unique value has (freq[vali] + 1) to be present in a unique subset
because it can be present 0 times, 1 time, 2 times . . . freq[vali] times in a subset.
Now this is true for all such unique elements.
Therefore, The number of unique subsets of a set  = Product of (frequency+1) of each element.

Below is the implementation of the above approach.

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find number of unique subsets
void countNumberofUniqueSubsets(int A[],
                                int N)
{
    // Creating a map to store
    // frequency of elements
    map<int, int> m;
 
    // Filling map
    for (int i = 0; i < N; i++) {
        // Counting frequency of each elements
        m[A[i]]++;
    }
 
    // Finding product of (frequency+1)
    // for each elements
    int subsets = 1;
 
    for (auto& value : m)
        subsets *= (value.second + 1);
 
    cout << subsets;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    countNumberofUniqueSubsets(arr, N);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to find number of unique subsets
  static void countNumberofUniqueSubsets(int A[],
                                         int N)
  {
     
    // Creating a map to store
    // frequency of elements
    HashMap<Integer, Integer> m = new HashMap<>();
 
    // Filling map
    for (int i = 0; i < N; i++) {
      // Counting frequency of each elements
      if (m.containsKey(A[i]))
      {
        m.put(A[i], m.get(A[i]) + 1);
      }
      else
      {
        m.put(A[i], 1);
      }
    }
 
    // Finding product of (frequency+1)
    // for each elements
    int subsets = 1;
 
    for (Map.Entry<Integer, Integer> value : m.entrySet())
      subsets *= (value.getValue() + 1);
 
    System.out.print(subsets);
  }
 
  // Driver Code
  public static void main (String[] args) {
    int arr[] = { 1, 2, 2 };
    int N = arr.length;
 
    // Function Call
    countNumberofUniqueSubsets(arr, N);
  }
}
 
// This code is contributed by hrithikgarg03188.


Python




# Python code for the above approach
 
# Function to find number of unique subsets
def countNumberofUniqueSubsets(A, N):
 
    # Creating a map to store
    # frequency of elements
    m = dict()
 
    # Filling map
    for i in range(N):
 
        # Counting frequency of each elements
        if (A[i] in m):
            m[A[i]] += 1
        else:
            m[A[i]] = 1
 
    # Finding product of (frequency+1)
    # for each elements
    subsets = 1
 
    for value in m.values():
        subsets = subsets * (value + 1)
 
    print(subsets)
 
# Driver Code
arr = [1, 2, 2]
N = len(arr)
 
# Function Call
countNumberofUniqueSubsets(arr, N)
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
 
  // Function to find number of unique subsets
  static void countNumberofUniqueSubsets(int []A, int N)
  {
 
    // Creating a map to store
    // frequency of elements
    Dictionary<int, int> m =
      new Dictionary<int, int>();
 
    // Filling map
    for (int i = 0; i < N; i++)
    {
 
      // Counting frequency of each elements
      if (m.ContainsKey(A[i]))
      {
        m[A[i]] = m[A[i]] + 1;
      }
      else
      {
        m.Add(A[i], 1);
      }
    }
 
    // Finding product of (frequency+1)
    // for each elements
    int subsets = 1;
 
    foreach(KeyValuePair<int, int> value in m)
    {
      subsets *= (value.Value + 1);
    }
 
    Console.Write(subsets);
  }
 
  // Driver Code
  public static void Main () {
    int []arr = { 1, 2, 2 };
    int N = arr.Length;
 
    // Function Call
    countNumberofUniqueSubsets(arr, N);
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
        // JavaScript code for the above approach
 
        // Function to find number of unique subsets
        function countNumberofUniqueSubsets(A, N)
        {
         
            // Creating a map to store
            // frequency of elements
            let m = new Map();
 
            // Filling map
            for (let i = 0; i < N; i++)
            {
             
                // Counting frequency of each elements
                if (m.has(A[i])) {
                    m.set(A[i], m.get(A[i])+ 1)
                }
                else {
                    m.set(A[i], 1)
                }
            }
 
            // Finding product of (frequency+1)
            // for each elements
            let subsets = 1;
 
            for (let value of m.values())
                subsets = subsets * (value + 1);
 
            document.write(subsets);
        }
 
        // Driver Code
        let arr = [1, 2, 2];
        let N = arr.length;
 
        // Function Call
        countNumberofUniqueSubsets(arr, N);
 
       // This code is contributed by Potta Lokesh
    </script>


 
 

Output

6

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!