Count of unique lengths of connected components for an undirected graph using STL
Given an undirected graph, the task is to find the size of each connected component and print the number of unique sizes of connected components
As depicted above, the count(size of the connected component) associated with the connected components is 2, 3, and 2. Now, the unique count of the components is 2 and 3. Hence, the expected result is Count = 2
Examples:
Input: N = 7
Output: 1 2 Count = 2 3 4 5 Count = 3 6 7 Count = 2 Unique Counts of connected components: 2 Input: N = 10
Output: 1 Count = 1 2 3 4 5 Count = 4 6 7 8 Count = 3 9 10 Count = 2 Unique Counts of connected components: 4
Prerequisites: Depth First Search
Approach:
The basic idea is to utilize the Depth First Search traversal method to keep a track of the connected components in the undirected graph. An STL container Set is used to store the unique counts of all such components since it is known that a set has the property of storing unique elements in a sorted manner. Finally, extracting the size of the Set gives us the necessary result. The step-wise implementation is as follows:
- Initialize a hash container (Set), to store the unique counts of connected components.
- Recursively call Depth First Search traversal.
- For every vertex visited, store the count in the set container.
- The final size of the Set is the required result.
Below is the implementation of the above approach:
C++
// C++ program to find unique count of // connected components #include <bits/stdc++.h> using namespace std; // Function to add edge in the graph void add_edge( int u, int v, vector< int > graph[]) { graph[u].push_back(v); graph[v].push_back(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains void depthFirst( int v, vector< int > graph[], vector< bool >& visited, int & ans) { // Marking the visited vertex as true visited[v] = true ; cout << v << " " ; // Incrementing the count of // connected chain length ans++; for ( auto i : graph[v]) { if (visited[i] == false ) { // Recursive call to the DFS algorithm depthFirst(i, graph, visited, ans); } } } // Function to initialize the graph // and display the result void UniqueConnectedComponent( int n, vector< int > graph[]) { // Initializing boolean visited array // to mark visited vertices vector< bool > visited(n + 1, false ); // Initializing a Set container unordered_set< int > result; // Following loop invokes DFS algorithm for ( int i = 1; i <= n; i++) { if (visited[i] == false ) { // ans variable stores the // individual counts int ans = 0; // DFS algorithm depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.insert(ans); cout << "Count = " << ans << "\n" ; } } cout << "Unique Counts of " << "connected components: " ; // The size of the Set container // gives the desired result cout << result.size() << "\n" ; } // Driver code int main() { // Number of nodes int n = 7; // Create graph vector< int > graph[n + 1]; // Constructing the undirected graph add_edge(1, 2, graph); add_edge(3, 4, graph); add_edge(3, 5, graph); add_edge(6, 7, graph); // Function call UniqueConnectedComponent(n, graph); return 0; } |
Java
// Java program to find // unique count of // connected components import java.util.*; class GFG{ // Function to add edge in the graph static void add_edge( int u, int v, Vector<Integer> graph[]) { graph[u].add(v); graph[v].add(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains static int depthFirst( int v, Vector<Integer> graph[], Vector<Boolean> visited, int ans) { // Marking the visited vertex as true visited.set(v, true ); System.out.print(v + " " ); // Incrementing the count of // connected chain length ans++; for ( int i : graph[v]) { if (visited.get(i) == false ) { // Recursive call to the DFS algorithm ans = depthFirst(i, graph, visited, ans); } } return ans; } // Function to initialize the graph // and display the result static void UniqueConnectedComponent( int n, Vector<Integer> graph[]) { // Initializing boolean visited array // to mark visited vertices Vector<Boolean> visited = new Vector<>(); for ( int i = 0 ; i < n + 1 ; i++) visited.add( false ); // Initializing a Set container HashSet<Integer> result = new HashSet<>(); // Following loop invokes DFS algorithm for ( int i = 1 ; i <= n; i++) { if (visited.get(i) == false ) { // ans variable stores the // individual counts int ans = 0 ; // DFS algorithm ans = depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.add(ans); System.out.print( "Count = " + ans + "\n" ); } } System.out.print( "Unique Counts of " + "connected components: " ); // The size of the Set container // gives the desired result System.out.print(result.size() + "\n" ); } // Driver code public static void main(String[] args) { // Number of nodes int n = 7 ; // Create graph @SuppressWarnings ( "unchecked" ) Vector<Integer>[] graph = new Vector[n+ 1 ]; for ( int i = 0 ; i < graph.length; i++) graph[i] = new Vector<Integer>(); // Constructing the undirected graph add_edge( 1 , 2 , graph); add_edge( 3 , 4 , graph); add_edge( 3 , 5 , graph); add_edge( 6 , 7 , graph); // Function call UniqueConnectedComponent(n, graph); } } |
Python3
# Python3 program to find unique count of # connected components graph = [[] for i in range ( 100 + 1 )] visited = [ False ] * ( 100 + 1 ) ans = 0 # Function to add edge in the graph def add_edge(u, v): graph[u].append(v) graph[v].append(u) # Function to traverse the undirected graph # using DFS algorithm and keep a track of # individual lengths of connected chains def depthFirst(v): global ans # Marking the visited vertex as true visited[v] = True print (v, end = " " ) #print(ans,end="-") # Incrementing the count of # connected chain length ans + = 1 for i in graph[v]: if (visited[i] = = False ): # Recursive call to the # DFS algorithm depthFirst(i) # Function to initialize the graph # and display the result def UniqueConnectedComponent(n): global ans # Initializing boolean visited array # to mark visited vertices # Initializing a Set container result = {} # Following loop invokes DFS algorithm for i in range ( 1 , n + 1 ): if (visited[i] = = False ): # ans variable stores the # individual counts # ans = 0 # DFS algorithm depthFirst(i) # Inserting the counts of connected # components in set result[ans] = 1 print ( "Count = " , ans) ans = 0 print ( "Unique Counts of connected " "components: " , end = "") # The size of the Set container # gives the desired result print ( len (result)) # Driver code if __name__ = = '__main__' : # Number of nodes n = 7 # Create graph # Constructing the undirected graph add_edge( 1 , 2 ) add_edge( 3 , 4 ) add_edge( 3 , 5 ) add_edge( 6 , 7 ) # Function call UniqueConnectedComponent(n) # This code is contributed by mohit kumar 29 |
C#
// C# program to find // unique count of // connected components using System; using System.Collections.Generic; class GFG{ // Function to add edge in the graph static void add_edge( int u, int v, List< int > []graph) { graph[u].Add(v); graph[v].Add(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains static int depthFirst( int v, List< int > []graph, List<Boolean> visited, int ans) { // Marking the visited // vertex as true visited.Insert(v, true ); Console.Write(v + " " ); // Incrementing the count of // connected chain length ans++; foreach ( int i in graph[v]) { if (visited[i] == false ) { // Recursive call to // the DFS algorithm ans = depthFirst(i, graph, visited, ans); } } return ans; } // Function to initialize the graph // and display the result static void UniqueConnectedComponent( int n, List< int > []graph) { // Initializing bool visited array // to mark visited vertices List<Boolean> visited = new List<Boolean>(); for ( int i = 0; i < n + 1; i++) visited.Add( false ); // Initializing a Set container HashSet< int > result = new HashSet< int >(); // Following loop invokes DFS algorithm for ( int i = 1; i <= n; i++) { if (visited[i] == false ) { // ans variable stores the // individual counts int ans = 0; // DFS algorithm ans = depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.Add(ans); Console.Write( "Count = " + ans + "\n" ); } } Console.Write( "Unique Counts of " + "connected components: " ); // The size of the Set container // gives the desired result Console.Write(result.Count + "\n" ); } // Driver code public static void Main(String[] args) { // Number of nodes int n = 7; // Create graph List< int > []graph = new List< int >[n + 1]; for ( int i = 0; i < graph.Length; i++) graph[i] = new List< int >(); // Constructing the undirected graph add_edge(1, 2, graph); add_edge(3, 4, graph); add_edge(3, 5, graph); add_edge(6, 7, graph); // Function call UniqueConnectedComponent(n, graph); } } // This code is contributed by shikhasingrajput |
Javascript
<script> // Javascript program to find // unique count of // connected components // Function to add edge in the graph function add_edge(u,v,graph) { graph[u].push(v); graph[v].push(u); } // Function to traverse the undirected graph // using DFS algorithm and keep a track of // individual lengths of connected chains function depthFirst(v, graph,visited,ans) { // Marking the visited vertex as true visited[v] = true ; document.write(v + " " ); // Incrementing the count of // connected chain length ans++; for (let i=0;i< graph[v].length;i++) { if (visited[graph[v][i]] == false ) { // Recursive call to the DFS algorithm ans = depthFirst(graph[v][i], graph, visited, ans); } } return ans; } // Function to initialize the graph // and display the result function UniqueConnectedComponent(n,graph) { // Initializing boolean visited array // to mark visited vertices let visited = []; for (let i = 0; i < n + 1; i++) visited.push( false ); // Initializing a Set container let result = new Set(); // Following loop invokes DFS algorithm for (let i = 1; i <= n; i++) { if (visited[i] == false ) { // ans variable stores the // individual counts let ans = 0; // DFS algorithm ans = depthFirst(i, graph, visited, ans); // Inserting the counts of connected // components in set result.add(ans); document.write( "Count = " + ans + "<br>" ); } } document.write( "Unique Counts of " + "connected components: " ); // The size of the Set container // gives the desired result document.write(result.size + "<br>" ); } // Driver code // Number of nodes let n = 7; // Create graph let graph = new Array(n + 1); for (let i = 0; i < graph.length; i++) graph[i] = []; // Constructing the undirected graph add_edge(1, 2, graph); add_edge(3, 4, graph); add_edge(3, 5, graph); add_edge(6, 7, graph); // Function call UniqueConnectedComponent(n, graph); // This code is contributed by patel2127 </script> |
1 2 Count = 2 3 4 5 Count = 3 6 7 Count = 2 Unique Counts of connected components: 2
Time Complexity:
As evident from the above implementation, the graph is traversed using the Depth First Search algorithm. The individual counts are stored using Set container wherein the insertion operation takes O(1) time. The overall complexity is solely based on the time taken by the DFS algorithm to run recursively. Hence, the time complexity of the program is O(E + V) where E is the number of edges and V is the number of vertices of the graph.
Auxiliary Space: O(N)
Please Login to comment...