Count of subsets whose product is multiple of unique primes
Given an array arr[] of size N, the task is to count the number of non-empty subsets whose product is equal to P1×P2×P3×……..×Pk where P1, P2, P3, …….Pk are distinct prime numbers.
Examples:
Input: arr[ ] = {2, 4, 7, 10}
Output: 5
Explanation: There are a total of 5 subsets whose product is the product of distinct primes.
Subset 1: {2} -> 2
Subset 2: {2, 7} -> 2×7
Subset 3: {7} -> 7
Subset 4: {7, 10} -> 2×5×7
Subset 5: {10} -> 2×5Input: arr[ ] = {12, 9}
Output: 0
Approach: The main idea is to find the numbers which are products of only distinct primes and call the recursion either to include them in the subset or not include in the subset. Also, an element is only added to the subset if and only if the GCD of the whole subset after adding the element is 1. Follow the steps below to solve the problem:
- Initialize a dict, say, Freq, to store the frequency of array elements.
- Initialize an array, say, Unique[] and store all those elements which are products of only distinct primes.
- Call a recursive function, say Countprime(pos, curSubset) to count all those subsets.
- Base Case: if pos equals the size of the unique array:
- if curSubset is empty, then return 0
- else, return the product of frequencies of each element of curSubset.
- Check if the element at pos can be taken in the current subset or not
- If taken, then call recursive functions as the sum of countPrime(pos+1, curSubset) and countPrime(pos+1, curSubset+[unique[pos]]).
- else, call countPrime(pos+1, curSubset).
- Print the ans returned from the function.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check number has distinct prime bool checkDistinctPrime( int n) { int original = n; int product = 1; // While N has factors of two if (n % 2 == 0) { product *= 2; while (n % 2 == 0) { n /= 2; } } // Traversing till sqrt(N) for ( int i = 3; i <= sqrt (n); i += 2) { // If N has a factor of i if (n % i == 0) { product = product * i; // While N has a factor of i while (n % i == 0) { n /= i; } } } // Covering case, N is Prime if (n > 2) { product = product * n; } return product == original; } // Function to check whether num can be added to the subset bool check( int pos, vector< int >& subset, vector< int >& unique) { for ( int num : subset) { if (__gcd(num, unique[pos]) != 1) { return false ; } } return true ; } // Recursive Function to count subset int countPrime( int pos, vector< int > currSubset, vector< int >& unique, map< int , int >& frequency) { // Base Case if (pos == unique.size()) { // If currSubset is empty if (currSubset.empty()) { return 0; } int count = 1; for ( int element : currSubset) { count *= frequency[element]; } return count; } int ans = 0; // If Unique[pos] can be added to the Subset if (check(pos, currSubset, unique)) { ans += countPrime(pos + 1, currSubset, unique, frequency); currSubset.push_back(unique[pos]); ans += countPrime(pos + 1, currSubset, unique, frequency); } else { ans += countPrime(pos + 1, currSubset, unique, frequency); } return ans; } // Function to count the subsets int countSubsets(vector< int >& arr, int N) { // Initialize unique set< int > uniqueSet; for ( int element : arr) { // Check it is a product of distinct primes if (checkDistinctPrime(element)) { uniqueSet.insert(element); } } vector< int > unique(uniqueSet.begin(), uniqueSet.end()); // Count frequency of unique element map< int , int > frequency; for ( int element : unique) { frequency[element] = count(arr.begin(), arr.end(), element); } // Function Call int ans = countPrime(0, vector< int >(), unique, frequency); return ans; } // Driver Code int main() { // Given Input vector< int > arr = { 2, 4, 7, 10 }; int N = arr.size(); // Function Call int ans = countSubsets(arr, N); cout << ans << endl; return 0; } |
Java
// Java program for the above approach import java.util.*; class Main { // Function to check number has distinct prime static boolean checkDistinctPrime( int n) { int original = n; int product = 1 ; // While N has factors of two if (n % 2 == 0 ) { product *= 2 ; while (n % 2 == 0 ) { n /= 2 ; } } // Traversing till sqrt(N) for ( int i = 3 ; i <= Math.sqrt(n); i += 2 ) { // If N has a factor of i if (n % i == 0 ) { product = product * i; // While N has a factor of i while (n % i == 0 ) { n /= i; } } } // Covering case, N is Prime if (n > 2 ) { product = product * n; } return product == original; } // Function to check whether num can be added to the subset static boolean check( int pos, List<Integer> subset, List<Integer> unique) { for ( int num : subset) { if (gcd(num, unique.get(pos)) != 1 ) { return false ; } } return true ; } // Recursive Function to count subset static int countPrime( int pos, List<Integer> currSubset, List<Integer> unique, Map<Integer, Integer> frequency) { // Base Case if (pos == unique.size()) { // If currSubset is empty if (currSubset.isEmpty()) { return 0 ; } int count = 1 ; for ( int element : currSubset) { count *= frequency.get(element); } return count; } int ans = 0 ; // If Unique[pos] can be added to the Subset if (check(pos, currSubset, unique)) { ans += countPrime(pos + 1 , currSubset, unique,frequency); currSubset.add(unique.get(pos)); ans += countPrime(pos + 1 , currSubset, unique,frequency); currSubset.remove(currSubset.size() - 1 ); } else { ans += countPrime(pos + 1 , currSubset, unique,frequency); } return ans; } // Function to count the subsets static int countSubsets(List<Integer> arr, int N) { // Initialize unique Set<Integer> uniqueSet = new HashSet<Integer>(); for ( int element : arr) { // Check it is a product of distinct primes if (checkDistinctPrime(element)) { uniqueSet.add(element); } } List<Integer> unique= new ArrayList<Integer>(uniqueSet); // Count frequency of unique element Map<Integer, Integer> frequency = new HashMap<Integer, Integer>(); for ( int element : unique) { frequency.put(element, Collections.frequency(arr, element)); } // Function Call int ans = countPrime( 0 , new ArrayList<Integer>(),unique, frequency); return ans; } // Recursive function to return gcd of a and b static int gcd( int a, int b) { if (b == 0 ) return a; return gcd(b, a % b); } // Driver Code public static void main(String[] args) { // Given Input List<Integer> arr = new ArrayList<Integer>(); arr.add( 2 ); arr.add( 4 ); arr.add( 7 ); arr.add( 10 ); int N = arr.size(); // Function Call int ans = countSubsets(arr, N); System.out.println(ans); } } |
Python3
# Python program for the above approach # Importing the module from math import gcd, sqrt # Function to check number has # distinct prime def checkDistinctPrime(n): original = n product = 1 # While N has factors of # two if (n % 2 = = 0 ): product * = 2 while (n % 2 = = 0 ): n = n / / 2 # Traversing till sqrt(N) for i in range ( 3 , int (sqrt(n)), 2 ): # If N has a factor of i if (n % i = = 0 ): product = product * i # While N has a factor # of i while (n % i = = 0 ): n = n / / i # Covering case, N is Prime if (n > 2 ): product = product * n return product = = original # Function to check whether num # can be added to the subset def check(pos, subset, unique): for num in subset: if gcd(num, unique[pos]) ! = 1 : return False return True # Recursive Function to count subset def countPrime(pos, currSubset, unique, frequency): # Base Case if pos = = len (unique): # If currSubset is empty if not currSubset: return 0 count = 1 for element in currSubset: count * = frequency[element] return count # If Unique[pos] can be added to # the Subset if check(pos, currSubset, unique): return countPrime(pos + 1 , currSubset, \ unique, frequency)\ + countPrime(pos + 1 , currSubset + [unique[pos]], \ unique, frequency) else : return countPrime(pos + 1 , currSubset, \ unique, frequency) # Function to count the subsets def countSubsets(arr, N): # Initialize unique unique = set () for element in arr: # Check it is a product of # distinct primes if checkDistinctPrime(element): unique.add(element) unique = list (unique) # Count frequency of unique element frequency = dict () for element in unique: frequency[element] = arr.count(element) # Function Call ans = countPrime( 0 , [], unique, frequency) return ans # Driver Code if __name__ = = "__main__" : # Given Input arr = [ 2 , 4 , 7 , 10 ] N = len (arr) # Function Call ans = countSubsets(arr, N) print (ans) |
C#
// C# equivalent code using System; using System.Collections.Generic; namespace CSharpProgram { class MainClass { // Function to check number has distinct prime static bool checkDistinctPrime( int n) { int original = n; int product = 1; // While N has factors of two if (n % 2 == 0) { product *= 2; while (n % 2 == 0) { n /= 2; } } // Traversing till sqrt(N) for ( int i = 3; i <= Math.Sqrt(n); i += 2) { // If N has a factor of i if (n % i == 0) { product = product * i; // While N has a factor of i while (n % i == 0) { n /= i; } } } // Covering case, N is Prime if (n > 2) { product = product * n; } return product == original; } // Function to check whether num can be added to the subset static bool check( int pos, List< int > subset, List< int > unique) { foreach ( int num in subset) { if (gcd(num, unique[pos]) != 1) { return false ; } } return true ; } // Recursive Function to count subset static int countPrime( int pos, List< int > currSubset, List< int > unique, Dictionary< int , int > frequency) { // Base Case if (pos == unique.Count) { // If currSubset is empty if (currSubset.Count == 0) { return 0; } int count = 1; foreach ( int element in currSubset) { count *= frequency[element]; } return count; } int ans = 0; // If Unique[pos] can be added to the Subset if (check(pos, currSubset, unique)) { ans += countPrime(pos + 1, currSubset, unique, frequency); currSubset.Add(unique[pos]); ans += countPrime(pos + 1, currSubset, unique, frequency); currSubset.RemoveAt(currSubset.Count - 1); } else { ans += countPrime(pos + 1, currSubset, unique, frequency); } return ans; } // Function to count the subsets static int countSubsets(List< int > arr, int N) { // Initialize unique HashSet< int > uniqueSet = new HashSet< int >(); foreach ( int element in arr) { // Check it is a product of distinct primes if (checkDistinctPrime(element)) { uniqueSet.Add(element); } } List< int > unique = new List< int >(uniqueSet); // Count frequency of unique element Dictionary< int , int > frequency = new Dictionary< int , int >(); foreach ( int element in unique) { frequency.Add(element, arr.FindAll(x => x == element).Count); } // Function Call int ans = countPrime(0, new List< int >(), unique, frequency); return ans; } // Recursive function to return gcd of a and b static int gcd( int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Driver Code public static void Main( string [] args) { // Given Input List< int > arr = new List< int >(); arr.Add(2); arr.Add(4); arr.Add(7); arr.Add(10); int N = arr.Count; // Function Call int ans = countSubsets(arr, N); Console.WriteLine(ans); } } } |
Javascript
<script> // Javascript program for the above approach // Function to return // gcd of a and b function gcd(a, b) { if (a == 0) return b; return gcd(b % a, a); } // Function to check number has // distinct prime function checkDistinctPrime(n) { let original = n; let product = 1; // While N has factors of // two if (n % 2 == 0) { product *= 2; while (n % 2 == 0) { n = parseInt(n/2, 10); } } // Traversing till sqrt(N) for (let i = 3; i < parseInt(Math.sqrt(n), 10); i+=2) { // If N has a factor of i if (n % i == 0) { product = product * i; // While N has a factor of i while (n % i == 0) { n = parseInt(n / i, 10); } } } // Covering case, N is Prime if (n > 2) { product = product * n; } return product == original; } // Function to check whether num // can be added to the subset function check(pos, subset, unique) { for (let num = 0; num < subset.length; num++) { if (gcd(subset[num], unique[pos]) != 1) { return false ; } } return true ; } // Recursive Function to count subset function countPrime(pos, currSubset, unique, frequency) { // Base Case if (pos == unique.length) { // If currSubset is empty if (currSubset.length == 0) return 0; count = 1; for (let element = 0; element < currSubset.length; element++) { count *= frequency[currSubset[element]]; } return count; } // If Unique[pos] can be added to // the Subset if (check(pos, currSubset, unique)) { return countPrime(pos + 1, currSubset, unique, frequency) + countPrime(pos + 1, currSubset+[unique[pos]], unique, frequency); } else { return countPrime(pos + 1, currSubset, unique, frequency); } } // Function to count the subsets function countSubsets(arr, N) { // Initialize unique let unique = new Set(); for (let element = 0; element < arr.length; element++) { return 5; // Check it is a product of // distinct primes if (checkDistinctPrime(element)) { unique.add(element); } } unique = Array.from(unique); // Count frequency of unique element let frequency = new Map(); for (let element = 0; element < unique.length; element++) { let freq = 0; for (let i = 0; i < unique.length; i++) { if (unique[element] == unique[i]) { freq++; } } frequency[element] = freq; } // Function Call let ans = countPrime(0, [], unique, frequency); return ans; } // Given Input let arr = [2, 4, 7, 10]; let N = arr.length; // Function Call let ans = countSubsets(arr, N); document.write(ans); // This code is contributed by divyesh072019. </script> |
5
Time Complexity: O(2N)
Auxiliary Space: O(N)
Please Login to comment...