Count of subsets having maximum possible XOR value
Given an array arr[] consisting of N positive integers. The task is to count the number of different non-empty subsets of arr[] having maximum bitwise XOR.
Examples:
Input: arr[] = {3, 1}
Output: 1
Explanation: The maximum possible bitwise XOR of a subset is 3.
In arr[] there is only one subset with bitwise XOR as 3 which is {3}.
Therefore, 1 is the answer.Input: arr[] = {3, 2, 1, 5}
Output: 2
Approach: This problem can be solved by using Bit Masking. Follow the steps below to solve the given problem.
- Initialize a variable say maxXorVal = 0, to store the maximum possible bitwise XOR of a subset in arr[].
- Traverse the array arr[] to find the value of maxXorVal.
- Initialize a variable say countSubsets = 0, to count the number of subsets with maximum bitwise XOR.
- After that count the number of subsets with the value maxXorVal.
- Return countSubsets as the final answer.
Below is the implementation of the above approach.
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to find subsets having maximum XOR int countMaxOrSubsets(vector< int >& nums) { // Store the size of arr[] long long n = nums.size(); // To store maximum possible // bitwise XOR subset in arr[] long long maxXorVal = 0; // Find the maximum bitwise xor value for ( int i = 0; i < (1 << n); i++) { long long xorVal = 0; for ( int j = 0; j < n; j++) { if (i & (1 << j)) { xorVal = (xorVal ^ nums[j]); } } // Take maximum of each value maxXorVal = max(maxXorVal, xorVal); } // Count the number // of subsets having bitwise // XOR value as maxXorVal long long count = 0; for ( int i = 0; i < (1 << n); i++) { long long val = 0; for ( int j = 0; j < n; j++) { if (i & (1 << j)) { val = (val ^ nums[j]); } } if (val == maxXorVal) { count++; } } return count; } // Driver Code int main() { int N = 4; vector< int > arr = { 3, 2, 1, 5 }; // Print the answer cout << countMaxOrSubsets(arr); return 0; } |
Java
// Java program for above approach import java.util.*; public class GFG { // Function to find subsets having maximum XOR static int countMaxOrSubsets( int []nums) { // Store the size of arr[] long n = nums.length; // To store maximum possible // bitwise XOR subset in arr[] long maxXorVal = 0 ; // Find the maximum bitwise xor value for ( int i = 0 ; i < ( 1 << n); i++) { long xorVal = 0 ; for ( int j = 0 ; j < n; j++) { if ((i & ( 1 << j)) == 0 ) { xorVal = (xorVal ^ nums[j]); } } // Take maximum of each value maxXorVal = Math.max(maxXorVal, xorVal); } // Count the number // of subsets having bitwise // XOR value as maxXorVal long count = 0 ; for ( int i = 0 ; i < ( 1 << n); i++) { long val = 0 ; for ( int j = 0 ; j < n; j++) { if ((i & ( 1 << j)) == 0 ) { val = (val ^ nums[j]); } } if (val == maxXorVal) { count++; } } return ( int )count; } // Driver Code public static void main(String args[]) { int N = 4 ; int []arr = { 3 , 2 , 1 , 5 }; // Print the answer System.out.print(countMaxOrSubsets(arr)); } } // This code is contributed by Samim Hossain Mondal. |
Python3
# Python program for above approach # Function to find subsets having maximum XOR def countMaxOrSubsets(nums): # Store the size of arr[] n = len (nums) # To store maximum possible # bitwise XOR subset in arr[] maxXorVal = 0 # Find the maximum bitwise xor value for i in range ( 0 , ( 1 << n)): xorVal = 0 for j in range ( 0 , n): if (i & ( 1 << j)): xorVal = (xorVal ^ nums[j]) # Take maximum of each value maxXorVal = max (maxXorVal, xorVal) # Count the number # of subsets having bitwise # XOR value as maxXorVal count = 0 for i in range ( 0 , ( 1 << n)): val = 0 for j in range ( 0 , n): if (i & ( 1 << j)): val = (val ^ nums[j]) if (val = = maxXorVal): count + = 1 return count # Driver Code if __name__ = = "__main__" : N = 4 arr = [ 3 , 2 , 1 , 5 ] # Print the answer print (countMaxOrSubsets(arr)) # This code is contributed by rakeshsahni |
C#
// C# program for above approach using System; public class GFG { // Function to find subsets having maximum XOR static int countMaxOrSubsets( int []nums) { // Store the size of []arr int n = nums.Length; // To store maximum possible // bitwise XOR subset in []arr int maxXorVal = 0; // Find the maximum bitwise xor value for ( int i = 0; i < (1 << n); i++) { long xorVal = 0; for ( int j = 0; j < n; j++) { if ((i & (1 << j)) == 0) { xorVal = (xorVal ^ nums[j]); } } // Take maximum of each value maxXorVal = ( int )Math.Max(maxXorVal, xorVal); } // Count the number // of subsets having bitwise // XOR value as maxXorVal long count = 0; for ( int i = 0; i < (1 << n); i++) { long val = 0; for ( int j = 0; j < n; j++) { if ((i & (1 << j)) == 0) { val = (val ^ nums[j]); } } if (val == maxXorVal) { count++; } } return ( int )count; } // Driver Code public static void Main(String []args) { int []arr = { 3, 2, 1, 5 }; // Print the answer Console.Write(countMaxOrSubsets(arr)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript program for above approach // Function to find subsets having maximum XOR function countMaxOrSubsets(nums) { // Store the size of arr[] let n = nums.length; // To store maximum possible // bitwise XOR subset in arr[] let maxXorVal = 0; // Find the maximum bitwise xor value for (let i = 0; i < (1 << n); i++) { let xorVal = 0; for (let j = 0; j < n; j++) { if (i & (1 << j)) { xorVal = (xorVal ^ nums[j]); } } // Take maximum of each value maxXorVal = Math.max(maxXorVal, xorVal); } // Count the number // of subsets having bitwise // XOR value as maxXorVal let count = 0; for (let i = 0; i < (1 << n); i++) { let val = 0; for (let j = 0; j < n; j++) { if (i & (1 << j)) { val = (val ^ nums[j]); } } if (val == maxXorVal) { count++; } } return count; } // Driver Code let N = 4; let arr = [ 3, 2, 1, 5 ]; // Print the answer document.write(countMaxOrSubsets(arr)); // This code is contributed by Potta Lokesh </script> |
Output
2
Time Complexity: O(216)
Auxiliary Space: O(1)
Please Login to comment...