Count of Squares that are parallel to the coordinate axis from the given set of N points
Given an array of points points[] in a cartesian coordinate system, the task is to find the count of the squares that are parallel to the coordinate axis. Examples:
Input:points[] = {(0, 0), (0, 2), (2, 0), (2, 2), (1, 1)} Output: 1 Explanation: As the points (0, 0), (0, 2), (2, 0), (2, 2) forms square which is parallel to the X-axis and Y-axis, Hence the count of such squares is 1. Input:points[] = {(2, 0), (0, 2), (2, 2), (0, 0), (-2, 2), (-2, 0)} Output: 2 Explanation: As the points (0, 0), (0, 2), (2, 0), (2, 2) forms one square, whereas points (0, 0), (0, 2), (-2, 0), (-2, 2) forms other square which is parallel to the X-axis and Y-axis, Hence the count of such squares is 2.
Approach: The idea is to choose two points from the array of points such that these two points are parallel to co-ordinate axis and then find other two points of the square with the help of the distance between the points. If those points exist in the array then, there is one such possible square. Below is the implementation of the above approach:
C++
// C++ implementation to find count of Squares // that are parallel to the coordinate axis // from the given set of N points #include <bits/stdc++.h> using namespace std; #define sz(x) int(x.size()) // Function to get distance // between two points int get_dis(pair< int , int > p1, pair< int , int > p2) { int a = abs (p1.first - p2.first); int b = abs (p1.second - p2.second); return ((a * a) + (b * b)); } // Function to check that points // forms a square and parallel to // the co-ordinate axis bool check(pair< int , int > p1, pair< int , int > p2, pair< int , int > p3, pair< int , int > p4) { int d2 = get_dis(p1, p2); int d3 = get_dis(p1, p3); int d4 = get_dis(p1, p4); if (d2 == d3 && 2 * d2 == d4 && 2 * get_dis(p2, p4) == get_dis(p2, p3)) { return true ; } if (d3 == d4 && 2 * d3 == d2 && 2 * get_dis(p3, p2) == get_dis(p3, p4)) { return true ; } if (d2 == d4 && 2 * d2 == d3 && 2 * get_dis(p2, p3) == get_dis(p2, p4)) { return true ; } return false ; } // Function to find all the squares which is // parallel to co-ordinate axis int count(map<pair< int , int >, int > hash, vector<pair< int , int > > v, int n) { int ans = 0; map<pair< int , int >, int > vis; // Loop to choose two points // from the array of points for ( int i = 0; i < n; i++) { for ( int j = 0; j < n; j++) { if (i == j) continue ; pair< int , int > p1 = make_pair(v[i].first, v[j].second); pair< int , int > p2 = make_pair(v[j].first, v[i].second); set<pair< int , int > > s; s.insert(v[i]); s.insert(v[j]); s.insert(p1); s.insert(p2); if (sz(s) != 4) continue ; // Condition to check if the // other points are present in the map if (hash.find(p1) != hash.end() && hash.find(p2) != hash.end()) { if ((!vis[v[i]] || !vis[v[j]] || !vis[p1] || !vis[p2]) && (check(v[i], v[j], p1, p2))) { vis[v[i]] = 1; vis[v[j]] = 1; vis[p1] = 1; vis[p2] = 1; ans++; } } } } cout << ans; return ans; } // Function to Count the number of squares void countOfSquares(vector<pair< int , int > > v, int n) { ios_base::sync_with_stdio(0); cin.tie(0); map<pair< int , int >, int > hash; // Declaring iterator to a vector vector<pair< int , int > >::iterator ptr; // Adding the points to hash for (ptr = v.begin(); ptr < v.end(); ptr++) hash[*ptr] = 1; // Count the number of squares count(hash, v, n); } // Driver Code int main() { int n = 5; vector<pair< int , int > > v; v.push_back(make_pair(0, 0)); v.push_back(make_pair(0, 2)); v.push_back(make_pair(2, 0)); v.push_back(make_pair(2, 2)); v.push_back(make_pair(0, 1)); // Function call countOfSquares(v, n); return 0; } |
Java
// Java implementation to find count of Squares // that are parallel to the coordinate axis // from the given set of N points import java.util.*; class GFG { // Function to get distance // between two points static int get_dis( int [] p1, int [] p2) { int a = Math.abs(p1[ 0 ] - p2[ 0 ]); int b = Math.abs(p1[ 1 ] - p2[ 1 ]); return ((a * a) + (b * b)); } // Function to check that points // forms a square and parallel to // the co-ordinate axis static boolean check( int [] p1, int [] p2, int [] p3, int [] p4) { int d2 = get_dis(p1, p2); int d3 = get_dis(p1, p3); int d4 = get_dis(p1, p4); if (d2 == d3 && 2 * d2 == d4 && 2 * get_dis(p2, p4) == get_dis(p2, p3)) { return true ; } if (d3 == d4 && 2 * d3 == d2 && 2 * get_dis(p3, p2) == get_dis(p3, p4)) { return true ; } if (d2 == d4 && 2 * d2 == d3 && 2 * get_dis(p2, p3) == get_dis(p2, p4)) { return true ; } return false ; } // Function to find all the squares which is // parallel to co-ordinate axis static int count(HashMap<String, Integer> hash, int [][] v, int n) { int ans = 1 ; HashMap<String, Integer> vis = new HashMap<String, Integer>(); // Loop to choose two points // from the array of points for (var i = 0 ; i < n; i++) { for (var j = 0 ; j < n; j++) { if (i == j) continue ; String v1 = String.valueOf(v[i][ 0 ]) + "#" + String.valueOf(v[i][ 1 ]); String v2 = String.valueOf(v[j][ 0 ]) + "#" + String.valueOf(v[j][ 1 ]); String p1 = String.valueOf(v[i][ 0 ]) + "#" + String.valueOf(v[j][ 1 ]); String p2 = String.valueOf(v[j][ 0 ]) + "#" + String.valueOf(v[i][ 1 ]); HashSet<String> s = new HashSet<String>(); s.add(v1); s.add(v2); s.add(p1); s.add(p2); if (s.size() != 4 ) continue ; // Condition to check if the // other points are present in the map if (hash.containsKey(p1) && hash.containsKey(p2)) { if ((!vis.containsKey(v1) || !vis.containsKey(v2) || !vis.containsKey(p1) || !vis.containsKey(p2) ) && (check(v[i], v[j], new int [] {v[i][ 0 ], v[j][ 1 ]}, new int [] {v[j][ 0 ], v[i][ 1 ]}))) { vis.put(v1, 1 ); vis.put(v2, 1 ); vis.put(p1, 1 ); vis.put(p2, 1 ); ans++; } } } } System.out.println(ans); return ans; } // Function to Count the number of squares static void countOfSquares( int [][] v, int n) { HashMap<String, Integer> hash = new HashMap<String, Integer>(); // Adding the points to hash for ( int [] ptr : v) { hash.put(String.valueOf(ptr[ 0 ]) + "#" + String.valueOf(ptr[ 1 ]), 1 ); } // Count the number of squares count(hash, v, n); } public static void main(String[] args) { // Driver Code int n = 5 ; int [][] v = new int [ 5 ][]; v[ 0 ] = new int [] { 0 , 0 }; v[ 1 ] = new int [] { 2 , 0 }; v[ 2 ] = new int [] { 2 , 0 }; v[ 3 ] = new int [] { 2 , 2 }; v[ 4 ] = new int [] { 0 , 1 }; // Function call countOfSquares(v, n); } } // This code is contributed by phasing17 |
Python3
# Python implementation to find count of Squares # that are parallel to the coordinate axis # from the given set of N points # Function to get distance # between two points def get_dis(p1, p2): a = abs (p1[ 0 ] - p2[ 0 ]); b = abs (p1[ 1 ] - p2[ 1 ]); return ((a * a) + (b * b)); # Function to check that points # forms a square and parallel to # the co-ordinate axis def check(p1, p2, p3, p4): d2 = get_dis(p1, p2); d3 = get_dis(p1, p3); d4 = get_dis(p1, p4); if (d2 = = d3 and 2 * d2 = = d4 and 2 * get_dis(p2, p4) = = get_dis(p2, p3)): return True ; if (d3 = = d4 and 2 * d3 = = d2 and 2 * get_dis(p3, p2) = = get_dis(p3, p4)): return True ; if (d2 = = d4 and 2 * d2 = = d3 and 2 * get_dis(p2, p3) = = get_dis(p2, p4)) : return True ; return False ; # Function to find all the squares which is # parallel to co-ordinate axis def count(hash1, v, n): ans = 0 ; vis = dict (); # Loop to choose two points # from the array of points for i in range (n): for j in range (n): if (i = = j): continue ; v1 = (v[i][ 0 ], v[i][ 1 ]) v2 = (v[j][ 0 ], v[j][ 1 ]) p1 = (v[i][ 0 ], v[j][ 1 ]); p2 = (v[j][ 0 ], v[i][ 1 ]); s = set () s.add(v1); s.add(v2); s.add(p1); s.add(p2); if ( len (s) ! = 4 ): continue ; # Condition to check if the # other points are present in the map if p1 in hash1 and p2 in hash1: if v1 not in vis or v2 not in vis or p1 not in vis or p2 not in vis: if (check(v[i], v[j], [v[i][ 0 ], v[j][ 1 ]], [v[j][ 0 ], v[i][ 1 ]])): vis[v1] = 1 ; vis[v2] = 1 ; vis[p1] = 1 ; vis[p2] = 1 ; ans + = 1 print (ans); return ans; # Function to Count the number of squares def countOfSquares(v, n): hash1 = dict (); # Adding the points to hash1 for ptr in v: hash1[(ptr[ 0 ], ptr[ 1 ])] = 1 ; # Count the number of squares count(hash1, v, n); # Driver Code n = 5 ; v = [ [ 0 , 0 ], [ 0 , 2 ], [ 2 , 0 ], [ 2 , 2 ], [ 0 , 1 ] ]; # Function call countOfSquares(v, n); # This code is contributed by phasing17 |
C#
// c# implementation to find count of Squares // that are parallel to the coordinate axis // from the given set of N points using System; using System.Collections.Generic; public class GFG { // Function to get distance // between two points static int get_dis( int [] p1, int [] p2) { int a = Math.Abs(p1[0] - p2[0]); int b = Math.Abs(p1[1] - p2[1]); return ((a * a) + (b * b)); } // Function to check that points // forms a square and parallel to // the co-ordinate axis static bool check( int [] p1, int [] p2, int [] p3, int [] p4) { int d2 = get_dis(p1, p2); int d3 = get_dis(p1, p3); int d4 = get_dis(p1, p4); if (d2 == d3 && 2 * d2 == d4 && 2 * get_dis(p2, p4) == get_dis(p2, p3)) { return true ; } if (d3 == d4 && 2 * d3 == d2 && 2 * get_dis(p3, p2) == get_dis(p3, p4)) { return true ; } if (d2 == d4 && 2 * d2 == d3 && 2 * get_dis(p2, p3) == get_dis(p2, p4)) { return true ; } return false ; } // Function to find all the squares which is // parallel to co-ordinate axis static int count(Dictionary< string , int > hash, int [][] v, int n) { int ans = 1; Dictionary< string , int > vis = new Dictionary< string , int >(); // Loop to choose two points // from the array of points for ( var i = 0; i < n; i++) { for ( var j = 0; j < n; j++) { if (i == j) continue ; string v1 = Convert.ToString(v[i][0]) + "#" + Convert.ToString(v[i][1]); string v2 = Convert.ToString(v[j][0]) + "#" + Convert.ToString(v[j][1]); string p1 = Convert.ToString(v[i][0]) + "#" + Convert.ToString(v[j][1]); string p2 = Convert.ToString(v[j][0]) + "#" + Convert.ToString(v[i][1]); HashSet< string > s = new HashSet< string >(); s.Add(v1); s.Add(v2); s.Add(p1); s.Add(p2); if (s.Count != 4) continue ; // Condition to check if the // other points are present in the map if (hash.ContainsKey(p1) && hash.ContainsKey(p2)) { if ((!vis.ContainsKey(v1) || !vis.ContainsKey(v2) || !vis.ContainsKey(p1) || !vis.ContainsKey(p2) ) && (check(v[i], v[j], new [] {v[i][0], v[j][1]}, new [] {v[j][0], v[i][1]}))) { vis[v1] = 1; vis[v2] = 1; vis[p1] = 1; vis[p2] = 1; ans++; } } } } Console.WriteLine(ans); return ans; } // Function to Count the number of squares static void countOfSquares( int [][] v, int n) { Dictionary< string , int > hash = new Dictionary< string , int >(); // Adding the points to hash foreach ( int [] ptr in v) { hash[Convert.ToString(ptr[0]) + "#" + Convert.ToString(ptr[1])] = 1; } // Count the number of squares count(hash, v, n); } public static void Main( string [] args) { // Driver Code int n = 5; int [][] v = new int [5][]; v[0] = new [] {0, 0}; v[1] = new [] {2, 0}; v[2] = new [] {2, 0}; v[3] = new [] {2, 2}; v[4] = new [] {0, 1}; // Function call countOfSquares(v, n); } } // This code is contributed by phasing17 |
Javascript
// JS implementation to find count of Squares // that are parallel to the coordinate axis // from the given set of N points function sz(x) { return x.length; } // Function to get distance // between two points function get_dis(p1, p2) { let a = Math.abs(p1[0] - p2[0]); let b = Math.abs(p1[1] - p2[1]); return ((a * a) + (b * b)); } // Function to check that points // forms a square and parallel to // the co-ordinate axis function check(p1, p2, p3, p4) { let d2 = get_dis(p1, p2); let d3 = get_dis(p1, p3); let d4 = get_dis(p1, p4); if (d2 == d3 && 2 * d2 == d4 && 2 * get_dis(p2, p4) == get_dis(p2, p3)) { return true ; } if (d3 == d4 && 2 * d3 == d2 && 2 * get_dis(p3, p2) == get_dis(p3, p4)) { return true ; } if (d2 == d4 && 2 * d2 == d3 && 2 * get_dis(p2, p3) == get_dis(p2, p4)) { return true ; } return false ; } // Function to find all the squares which is // parallel to co-ordinate axis function count(hash, v, n) { let ans = 0; let vis = {}; // Loop to choose two points // from the array of points for ( var i = 0; i < n; i++) { for ( var j = 0; j < n; j++) { if (i == j) continue ; let v1 = v[i][0] + "#" + v[i][1] let v2 = v[j][0] + "#" + v[j][1] let p1 = v[i][0] + "#" + v[j][1]; let p2 = v[j][0] + "#" + v[i][1]; let s = new Set(); s.add(v1); s.add(v2); s.add(p1); s.add(p2); if (s.size != 4) continue ; // Condition to check if the // other points are present in the map if (hash.hasOwnProperty(p1) && hash.hasOwnProperty(p2)) { if ((!vis.hasOwnProperty(v1) || !vis.hasOwnProperty(v2) || !vis.hasOwnProperty(p1) || !vis.hasOwnProperty(p2) ) && (check(v[i], v[j], [v[i][0], v[j][1]], [v[j][0], v[i][1]]))) { vis[v1] = 1; vis[v2] = 1; vis[p1] = 1; vis[p2] = 1; ans++; } } } } console.log(ans); return ans; } // Function to Count the number of squares function countOfSquares(v, n) { let hash = {}; // Adding the points to hash for ( var ptr of v) { hash[ptr[0] + "#" + ptr[1]] = 1; } // Count the number of squares count(hash, v, n); } // Driver Code let n = 5; let v = [ [0, 0], [0, 2], [2, 0], [2, 2], [0, 1] ]; // Function call countOfSquares(v, n); // This code is contributed by phasing17 |
1
Performance Analysis:
- Time Complexity: As in the above approach, there are two loops which takes O(N2) time, Hence the Time Complexity will be O(N2).
- Auxiliary Space Complexity: As in the above approach, there is extra space used, Hence the auxiliary space complexity will be O(N).
Please Login to comment...