Count of pairs in Array with difference equal to the difference with digits reversed
Given an array arr[] of N integers, the task is to find the number of pairs of array elements (arr[i], arr[j]) such that the difference between the pairs is equal to the difference when the digits of both the numbers are reversed.
Examples:
Input: arr[] = {42, 11, 1, 97}
Output: 2
Explanation:
The valid pairs of array elements are (42, 97), (11, 1) as:
1. 42 – 97 = 24 – 79 = (-55)
2. 11 – 1 = 11 – 1 = (10)Input: arr[] = {1, 2, 3, 4}
Output: 6
Approach: The given problem can be solved by using Hashing which is based on the following observations:
A valid pair (i, j) will follow the equation as
=> arr[i] – arr[j] = rev(arr[i]) – rev(arr[j])
=> arr[i] – rev(arr[i]) = arr[j] – rev(arr[j])
Follow the below steps to solve the problem:
- Now, create a function reverseDigits, which will take an integer as an argument and reverse the digits of that integer.
- Store the frequency of values arr[i] – rev(arr[i]) in an unordered map, say mp.
- For each key(= difference) of frequency X the number of pairs that can be formed is given by
.
- The total count of pairs is given by the sum of the value of the above expression for each frequency stored in the map mp.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to reverse the digits // of an integer int reverseDigits( int n) { // Convert the given number // to a string string s = to_string(n); // Reverse the string reverse(s.begin(), s.end()); // Return the value of the string return stoi(s); } int countValidPairs(vector< int > arr) { // Stores resultant count of pairs long long res = 0; // Stores the frequencies of // differences unordered_map< int , int > mp; for ( int i = 0; i < arr.size(); i++) { mp[arr[i] - reverseDigits(arr[i])]++; } // Traverse the map and count pairs // formed for all frequency values for ( auto i : mp) { long long int t = i.second; res += t * (t - 1) / 2; } // Return the resultant count return res; } // Driver Code int main() { vector< int > arr = { 1, 2, 3, 4 }; cout << countValidPairs(arr); return 0; } |
Java
// Java program for the above approach import java.util.HashMap; class GFG { // Function to reverse the digits // of an integer public static int reverseDigits( int n) { // Convert the given number // to a string String s = String.valueOf(n); // Reverse the string s = new StringBuffer(s).reverse().toString(); // Return the value of the string return Integer.parseInt(s); } public static int countValidPairs( int [] arr) { // Stores resultant count of pairs int res = 0 ; // Stores the frequencies of // differences HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>(); for ( int i = 0 ; i < arr.length; i++) { if (mp.containsKey(arr[i] - reverseDigits(arr[i]))) { mp.put(arr[i] - reverseDigits(arr[i]), mp.get(arr[i] - reverseDigits(arr[i])) + 1 ); } else { mp.put(arr[i] - reverseDigits(arr[i]), 1 ); } } // Traverse the map and count pairs // formed for all frequency values for ( int i : mp.keySet()) { int t = mp.get(i); res += t * (t - 1 ) / 2 ; } // Return the resultant count return res; } // Driver Code public static void main(String args[]) { int [] arr = { 1 , 2 , 3 , 4 }; System.out.println(countValidPairs(arr)); } } // This code is contributed by saurabh_jaiswal. |
Python3
# python program for the above approach # Function to reverse the digits # of an integer def reverseDigits(n): # Convert the given number # to a string s = str (n) # Reverse the string s = "".join( reversed (s)) # Return the value of the string return int (s) def countValidPairs(arr): # Stores resultant count of pairs res = 0 # Stores the frequencies of # differences mp = {} for i in range ( 0 , len (arr)): if not arr[i] - reverseDigits(arr[i]) in mp: mp[arr[i] - reverseDigits(arr[i])] = 1 else : mp[arr[i] - reverseDigits(arr[i])] + = 1 # Traverse the map and count pairs # formed for all frequency values for i in mp: t = mp[i] res + = (t * (t - 1 )) / / 2 # Return the resultant count return res # Driver Code if __name__ = = "__main__" : arr = [ 1 , 2 , 3 , 4 ] print (countValidPairs(arr)) # This code is contributed by rakeshsahni |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to reverse the digits // of an integer public static int reverseDigits( int n) { // Convert the given number // to a string string s = n.ToString(); // Reverse the string char [] arr = s.ToCharArray(); Array.Reverse(arr); string st = new string (arr); // Return the value of the string return Int32.Parse(st); } public static int countValidPairs( int [] arr) { // Stores resultant count of pairs int res = 0; // Stores the frequencies of // differences Dictionary< int , int > mp = new Dictionary< int , int >(); for ( int i = 0; i < arr.Length; i++) { if (mp.ContainsKey(arr[i] - reverseDigits(arr[i]))) { mp[arr[i] - reverseDigits(arr[i])] = mp[arr[i] - reverseDigits(arr[i])] + 1; } else { mp[arr[i] - reverseDigits(arr[i])] = 1; } } // Traverse the map and count pairs // formed for all frequency values foreach ( int i in mp.Keys) { int t = mp[i]; res += t * (t - 1) / 2; } // Return the resultant count return res; } // Driver Code public static void Main() { int [] arr = { 1, 2, 3, 4 }; Console.WriteLine(countValidPairs(arr)); } } // This code is contributed by ukasp. |
Javascript
<script> // Javascript program for the above approach // Function to reverse the digits // of an integer function reverseDigits(n) { // Convert the given number // to a string let s = new String(n); // Reverse the string s = s.split( "" ).reverse().join( "" ); // Return the value of the string return parseInt(s); } function countValidPairs(arr) { // Stores resultant count of pairs let res = 0; // Stores the frequencies of // differences let mp = new Map(); for (let i = 0; i < arr.length; i++) { let temp = arr[i] - reverseDigits(arr[i]); if (mp.has(temp)) { mp.set(temp, mp.get(temp) + 1); } else { mp.set(temp, 1); } } // Traverse the map and count pairs // formed for all frequency values for (i of mp) { let t = i[1]; res += (t * (t - 1)) / 2; } // Return the resultant count return res; } // Driver Code let arr = [1, 2, 3, 4]; document.write(countValidPairs(arr)); // This code is contributed by gfgking. </script> |
6
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...