Skip to content
Related Articles

Related Articles

Count of maximum distinct Rectangles possible with given Perimeter

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 09 Feb, 2022

Given an integer N denoting the perimeter of a rectangle. The task is to find the number of distinct rectangles possible with a given perimeter. 

Examples

Input: N = 10
Output: 4
Explanation: All the rectangles with perimeter 10 are following in the form of (length, breadth):
(1, 4), (4, 1), (2, 3), (3, 2)

Input: N = 8
Output: 3

 

Approach: This problem can be solved by using the properties of rectangles. Follow the steps below to solve the given problem.

  • The perimeter of a rectangle is 2*(length + breadth).
  • If N is odd, then there is no rectangle possible. As perimeter can never be odd.
  • If N is less than 4 then also, there cannot be any rectangle possible. As the minimum possible length of a side is 1, even if the length of all the sides is 1 then also the perimeter will be 4.
  • Now N = 2*(l + b) and (l + b) = N/2.
  • So, it is required to find all the pairs whose sum is N/2 which is (N/2) – 1.

Below is the implementation of the above approach.

C++




#include <iostream>
using namespace std;
 
// Function to find the maximum number
// of distinct rectangles with given perimeter
void maxRectanglesPossible(int N)
{
    // Invalid case
    if (N < 4 || N % 2 != 0) {
        cout << -1 << "\n";
    }
    else
        // Number of distinct rectangles.
        cout << (N / 2) - 1 << "\n";
}
 
// Driver Code
int main()
{
 
    // Perimeter of the rectangle.
    int N = 20;
 
    maxRectanglesPossible(N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
// Function to find the maximum number
// of distinct rectangles with given perimeter
static void maxRectanglesPossible(int N)
{
   
    // Invalid case
    if (N < 4 || N % 2 != 0) {
        System.out.println(-1);
    }
    else
        // Number of distinct rectangles.
       System.out.println((N / 2) - 1);
}
 
// Driver Code
    public static void main (String[] args) {
          // Perimeter of the rectangle.
        int N = 20;
 
        maxRectanglesPossible(N);
    }
}
 
// This code is contributed by hrithikgarg0388.


Python3




# Function to find the maximum number
# of distinct rectangles with given perimeter
def maxRectanglesPossible (N):
 
    # Invalid case
    if (N < 4 or N % 2 != 0):
        print("-1");
    else:
        # Number of distinct rectangles.
        print(int((N / 2) - 1));
 
 
# Driver Code
 
# Perimeter of the rectangle.
N = 20;
maxRectanglesPossible(N);
 
# This code is contributed by gfgking


C#




// C# program for the above approach
using System;
class GFG {
 
// Function to find the maximum number
// of distinct rectangles with given perimeter
static void maxRectanglesPossible(int N)
{
   
    // Invalid case
    if (N < 4 || N % 2 != 0) {
        Console.WriteLine(-1);
    }
    else
        // Number of distinct rectangles.
       Console.WriteLine((N / 2) - 1);
}
 
// Driver Code
    public static void Main () {
          // Perimeter of the rectangle.
        int N = 20;
 
        maxRectanglesPossible(N);
    }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
 
    // Function to find the maximum number
    // of distinct rectangles with given perimeter
    const maxRectanglesPossible = (N) => {
     
        // Invalid case
        if (N < 4 || N % 2 != 0) {
            document.write("-1<br/>");
        }
        else
            // Number of distinct rectangles.
            document.write(`${(N / 2) - 1}<br/>`);
    }
 
    // Driver Code
 
    // Perimeter of the rectangle.
    let N = 20;
    maxRectanglesPossible(N);
 
// This code is contributed by rakeshsahni
 
</script>


Output

9

Time Complexity: O(1) 
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!