Count of distinct integers belonging to first N terms of at least one of given GPs
Given two Geometric Progressions (a1, r1) and (a2, r2) where (x, y) represents GP with initial term x and common ratio y and an integer N, the task is to find the count of the distinct integers that belong to the first N terms of at least one of the given geometric progressions.
Examples:
Input: N = 5, a1 = 3, r1 = 2, a2 = 6, r2 = 2
Output: 6
Explanation: The first 5 terms of the given geometric progressions are {3, 6, 12, 24, 48} and {6, 12, 24, 48, 96} respectively. Hence, the total count of distinct integers in the GP is 6.Input: N = 5, a1 = 3, r1 = 2, a2 = 2, r2 = 3
Output: 9
Explanation: The first 5 terms of the given geometric progressions are {3, 6, 12, 24, 48} and {2, 6, 18, 54, 162} respectively. Hence, the total count of distinct integers in the GP is 9.
Approach: The given problem can be solved by the observation that the total count of distinct integers can be calculated by generating the first N terms of both the Geometric Progressions and removing the duplicates terms. This can be achieved by the use of the set data structure. Firstly, generate all the N terms of the 1st GP and insert the terms into a set S. Similarly, insert the terms of the 2nd GP into the set S. The size of the set S is the required answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the count of distinct // integers that belong to the first N // terms of at least one of them is GP int UniqueGeometricTerms( int N, int a1, int r1, int a2, int r2) { // Stores the integers that occur in // GPs in a set data-structure set< int > S; // Stores the current integer of // the first GP long long p1 = a1; // Iterate first N terms of first GP for ( int i = 0; i < N; i++) { // Insert the ith term of GP in S S.insert(p1); p1 = ( long long )(p1 * r1); } // Stores the current integer // of the second GP long long p2 = a2; // Iterate first N terms of second GP for ( int i = 0; i < N; i++) { S.insert(p2); p2 = ( long long )(p2 * r2); } // Return Answer return S.size(); } // Driver Code int main() { int N = 5; int a1 = 3, r1 = 2, a2 = 2, r2 = 3; cout << UniqueGeometricTerms( N, a1, r1, a2, r2); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to find the count of distinct // integers that belong to the first N // terms of at least one of them is GP static int UniqueGeometricTerms( int N, int a1, int r1, int a2, int r2) { // Stores the integers that occur in // GPs in a set data-structure HashSet<Integer> S= new HashSet<Integer>(); // Stores the current integer of // the first GP int p1 = a1; // Iterate first N terms of first GP for ( int i = 0 ; i < N; i++) { // Insert the ith term of GP in S S.add(p1); p1 = (p1 * r1); } // Stores the current integer // of the second GP int p2 = a2; // Iterate first N terms of second GP for ( int i = 0 ; i < N; i++) { S.add(p2); p2 = (p2 * r2); } // Return Answer return S.size(); } // Driver Code public static void main(String[] args) { int N = 5 ; int a1 = 3 , r1 = 2 , a2 = 2 , r2 = 3 ; System.out.print(UniqueGeometricTerms( N, a1, r1, a2, r2)); } } // This code is contributed by shikhasingrajput |
Python3
# Python 3 program for the above approach # Function to find the count of distinct # integers that belong to the first N # terms of at least one of them is GP def UniqueGeometricTerms(N, a1, r1, a2, r2): # Stores the integers that occur in # GPs in a set data-structure S = set () # Stores the current integer of # the first GP p1 = a1 # Iterate first N terms of first GP for i in range (N): # Insert the ith term of GP in S S.add(p1) p1 = (p1 * r1) # Stores the current integer # of the second GP p2 = a2 # Iterate first N terms of second GP for i in range (N): S.add(p2) p2 = (p2 * r2) # Return Answer return len (S) # Driver Code if __name__ = = '__main__' : N = 5 a1 = 3 r1 = 2 a2 = 2 r2 = 3 print (UniqueGeometricTerms(N, a1, r1, a2, r2)) # This code is contributed by SURENDRA_GANGWAR. |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG { // Function to find the count of distinct // integers that belong to the first N // terms of at least one of them is GP static int UniqueGeometricTerms( int N, int a1, int r1, int a2, int r2) { // Stores the integers that occur in // GPs in a set data-structure HashSet< int > S= new HashSet< int >(); // Stores the current integer of // the first GP int p1 = a1; // Iterate first N terms of first GP for ( int i = 0; i < N; i++) { // Insert the ith term of GP in S S.Add(p1); p1 = (p1 * r1); } // Stores the current integer // of the second GP int p2 = a2; // Iterate first N terms of second GP for ( int i = 0; i < N; i++) { S.Add(p2); p2 = (p2 * r2); } // Return Answer return S.Count; } // Driver Code public static void Main( string [] args) { int N = 5; int a1 = 3, r1 = 2, a2 = 2, r2 = 3; Console.Write(UniqueGeometricTerms( N, a1, r1, a2, r2)); } } // This code is contributed by AnkThon |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to find the count of distinct // integers that belong to the first N // terms of at least one of them is GP function UniqueGeometricTerms(N, a1, r1, a2, r2) { // Stores the integers that occur in // GPs in a set data-structure let S = new Set(); // Stores the current integer of // the first GP let p1 = a1; // Iterate first N terms of first GP for (let i = 0; i < N; i++) { // Insert the ith term of GP in S S.add(p1); p1 = (p1 * r1); } // Stores the current integer // of the second GP let p2 = a2; // Iterate first N terms of second GP for (let i = 0; i < N; i++) { S.add(p2); p2 = (p2 * r2); } // Return Answer return S.size; } // Driver Code let N = 5; let a1 = 3, r1 = 2, a2 = 2, r2 = 3; document.write(UniqueGeometricTerms( N, a1, r1, a2, r2)); // This code is contributed by Potta Lokesh </script> |
9
Time Complexity: O(N*log N)
Auxiliary Space: O(N)
Please Login to comment...