Count of Array elements greater than or equal to twice the Median of K trailing Array elements
Given an array A[] of size greater than integer K, the task is to find the total number of elements from the array which are greater than or equal to twice the median of K trailing elements in the given array.
Examples:
Input: A[] = {10, 20, 30, 40, 50}, K = 3
Output: 1
Explanation:
Since K = 3, the only two elements to be checked are {40, 50}.
For 40, the median of 3 trailing numbers {10, 20, 30} is 20.
Since 40 = 2 * 20, 40 is counted.
For element 50 the median of 3 trailing numbers {20, 30, 40} is 30.
Since 50 < 2 * 30, so 50 is not counted.
Therefore, the answer is 1.Input: A[] = {1, 2, 2, 4, 5}, K = 3
Output: 2
Explanation:
Since K = 3, the only two elements considered are {4, 5}.
For 4, the median of 3 trailing numbers {1, 2, 2} is 2.
Since 4 = 2 * 2, therefore, 4 is counted.
For 5 the median of 3 trailing numbers {2, 2, 4} is 2.
5 > 2 * 2, so 5 is counted.
Therefore, the answer is 2.
Naive Approach:
Follow the steps below to solve the problem:
- Iterate over the given array from K + 1 to the size of the array and for each element, add the previous K elements from the array.
- Then, find the median and check if the current element is equal to or exceeds twice the value of the median. If found to be true, increase count.
- Finally. print the count.
Time Complexity: O(N * K * log K)
Auxiliary Space: O(1)
Efficient Approach:
To optimize the above approach, the idea is to use frequency-counting and sliding window technique. Follow the steps below to solve the problem:
- Store the frequencies of the elements present in the first K indices.
- Iterate over the array from (k + 1)th index to the Nth index and for each iteration, decrease the frequency of the i – kth element where i is the current index of the previous K trailing elements and increase the frequency count of the current element.
- For each iteration obtain the value of the low median and high median which will be different if the K is even. Otherwise it will be the same.
- Initialize a count variable that will count the frequency. Whenever floor((k+1)/2) is reached, the count gives a low median and similarly when the count reaches to ceil((k+1)/2) then it gives high median.
- Then add both the low and high median value and check if the current value is greater than or equal to it or and accordingly update the answer.
Below is the implementation of the above approach:
C++
// C++ Program to implement the above approach #include <bits/stdc++.h> using namespace std; const int N = 2e5; const int V = 500; // Function to find the count of array elements >= twice the // median of K trailing array elements void solve( int n, int d, int input[]) { int a[N]; // Stores frequencies int cnt[V + 1]; // Stores the array elements for ( int i = 0; i < n; ++i) a[i] = input[i]; int answer = 0; // Count the frequencies of the array elements for ( int i = 0; i < d; ++i) cnt[a[i]]++; // Iterating from d to n-1 index means (d+1)th element // to nth element for ( int i = d; i <= n - 1; ++i) { // To check the median int acc = 0; int low_median = -1, high_median = -1; // Iterate over the frequencies of the elements for ( int v = 0; v <= V; ++v) { // Add the frequencies acc += cnt[v]; // Check if the low_median value is obtained or // not, if yes then do not change as it will be // minimum if (low_median == -1 && acc >= int ( floor ((d + 1) / 2.0))) low_median = v; // Check if the high_median value is obtained or // not, if yes then do not change it as it will // be maximum if (high_median == -1 && acc >= int ( ceil ((d + 1) / 2.0))) high_median = v; } // Store 2 * median of K trailing elements int double_median = low_median + high_median; // If the current >= 2 * median if (a[i] >= double_median) answer++; // Decrease the frequency for (k-1)-th element cnt[a[i - d]]--; // Increase the frequency of the current element cnt[a[i]]++; } // Print the count cout << answer << endl; } // Driver Code int main() { int input[] = { 1, 2, 2, 4, 5 }; int n = sizeof input / sizeof input[0]; int k = 3; solve(n, k, input); return 0; } // This code is contributed by Sania Kumari Gupta |
C
// C Program to implement the above approach #include <stdio.h> #include <math.h> const int N = 2e5; const int V = 500; // Function to find the count of array elements >= twice the // median of K trailing array elements void solve( int n, int d, int input[]) { int a[N]; // Stores frequencies int cnt[V + 1]; // Stores the array elements for ( int i = 0; i < n; ++i) a[i] = input[i]; int answer = 0; // Count the frequencies of the array elements for ( int i = 0; i < d; ++i) cnt[a[i]]++; // Iterating from d to n-1 index means (d+1)th element // to nth element for ( int i = d; i <= n - 1; ++i) { // To check the median int acc = 0; int low_median = -1, high_median = -1; // Iterate over the frequencies of the elements for ( int v = 0; v <= V; ++v) { // Add the frequencies acc += cnt[v]; // Check if the low_median value is obtained or // not, if yes then do not change as it will be // minimum if (low_median == -1 && acc >= floor ((d + 1) / 2.0)) low_median = v; // Check if the high_median value is obtained or // not, if yes then do not change it as it will // be maximum if (high_median == -1 && acc >= ceil ((d + 1) / 2.0)) high_median = v; } // Store 2 * median of K trailing elements int double_median = low_median + high_median; // If the current >= 2 * median if (a[i] >= double_median) answer++; // Decrease the frequency for (k-1)-th element cnt[a[i - d]]--; // Increase the frequency of the current element cnt[a[i]]++; } // Print the count printf ( "%d" ,answer); } // Driver Code int main() { int input[] = { 1, 2, 2, 4, 5 }; int n = sizeof input / sizeof input[0]; int k = 3; solve(n, k, input); return 0; } // This code is contributed by Sania Kumari Gupta |
Java
// Java Program to implement // the above approach class GFG{ static int N = ( int ) 2e5; static int V = 500 ; // Function to find the count of array // elements >= twice the median of K // trailing array elements static void solve( int n, int d, int input[]) { int []a = new int [N]; // Stores frequencies int []cnt = new int [V + 1 ]; // Stores the array elements for ( int i = 0 ; i < n; ++i) a[i] = input[i]; int answer = 0 ; // Count the frequencies of the // array elements for ( int i = 0 ; i < d; ++i) cnt[a[i]]++; // Iterating from d to n-1 index // means (d+1)th element to nth element for ( int i = d; i <= n - 1 ; ++i) { // To check the median int acc = 0 ; int low_median = - 1 , high_median = - 1 ; // Iterate over the frequencies // of the elements for ( int v = 0 ; v <= V; ++v) { // Add the frequencies acc += cnt[v]; // Check if the low_median value is // obtained or not, if yes then do // not change as it will be minimum if (low_median == - 1 && acc >= ( int )(Math.floor((d + 1 ) / 2.0 ))) low_median = v; // Check if the high_median value is // obtained or not, if yes then do not // change it as it will be maximum if (high_median == - 1 && acc >= ( int )(Math.ceil((d + 1 ) / 2.0 ))) high_median = v; } // Store 2 * median of K trailing elements int double_median = low_median + high_median; // If the current >= 2 * median if (a[i] >= double_median) answer++; // Decrease the frequency for (k-1)-th element cnt[a[i - d]]--; // Increase the frequency of the // current element cnt[a[i]]++; } // Print the count System.out.print(answer + "\n" ); } // Driver Code public static void main(String[] args) { int input[] = { 1 , 2 , 2 , 4 , 5 }; int n = input.length; int k = 3 ; solve(n, k, input); } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 program to implement # the above approach import math N = 200000 V = 500 # Function to find the count of array # elements >= twice the median of K # trailing array elements def solve(n, d, input1): a = [ 0 ] * N # Stores frequencies cnt = [ 0 ] * (V + 1 ) # Stores the array elements for i in range (n): a[i] = input1[i] answer = 0 # Count the frequencies of the # array elements for i in range (d): cnt[a[i]] + = 1 # Iterating from d to n-1 index # means (d+1)th element to nth element for i in range (d, n): # To check the median acc = 0 low_median = - 1 high_median = - 1 # Iterate over the frequencies # of the elements for v in range (V + 1 ): # Add the frequencies acc + = cnt[v] # Check if the low_median value is # obtained or not, if yes then do # not change as it will be minimum if (low_median = = - 1 and acc > = int (math.floor((d + 1 ) / 2.0 ))): low_median = v # Check if the high_median value is # obtained or not, if yes then do not # change it as it will be maximum if (high_median = = - 1 and acc > = int (math.ceil((d + 1 ) / 2.0 ))): high_median = v # Store 2 * median of K trailing elements double_median = low_median + high_median # If the current >= 2 * median if (a[i] > = double_median): answer + = 1 # Decrease the frequency for (k-1)-th element cnt[a[i - d]] - = 1 # Increase the frequency of the # current element cnt[a[i]] + = 1 # Print the count print (answer) # Driver Code if __name__ = = "__main__" : input1 = [ 1 , 2 , 2 , 4 , 5 ] n = len (input1) k = 3 solve(n, k, input1) # This code is contributed by chitranayal |
C#
// C# Program to implement // the above approach using System; class GFG{ static int N = ( int ) 2e5; static int V = 500; // Function to find the count of array // elements >= twice the median of K // trailing array elements static void solve( int n, int d, int []input) { int []a = new int [N]; // Stores frequencies int []cnt = new int [V + 1]; // Stores the array elements for ( int i = 0; i < n; ++i) a[i] = input[i]; int answer = 0; // Count the frequencies of the // array elements for ( int i = 0; i < d; ++i) cnt[a[i]]++; // Iterating from d to n-1 index // means (d+1)th element to nth element for ( int i = d; i <= n - 1; ++i) { // To check the median int acc = 0; int low_median = -1, high_median = -1; // Iterate over the frequencies // of the elements for ( int v = 0; v <= V; ++v) { // Add the frequencies acc += cnt[v]; // Check if the low_median value is // obtained or not, if yes then do // not change as it will be minimum if (low_median == -1 && acc >= ( int )(Math.Floor((d + 1) / 2.0))) low_median = v; // Check if the high_median value is // obtained or not, if yes then do not // change it as it will be maximum if (high_median == -1 && acc >= ( int )(Math.Ceiling((d + 1) / 2.0))) high_median = v; } // Store 2 * median of K trailing elements int double_median = low_median + high_median; // If the current >= 2 * median if (a[i] >= double_median) answer++; // Decrease the frequency for (k-1)-th element cnt[a[i - d]]--; // Increase the frequency of the // current element cnt[a[i]]++; } // Print the count Console.Write(answer + "\n" ); } // Driver Code public static void Main(String[] args) { int []input = { 1, 2, 2, 4, 5 }; int n = input.Length; int k = 3; solve(n, k, input); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // Javascript Program to implement // the above approach const N = 2e5; const V = 500; // Function to find the count of array // elements >= twice the median of K // trailing array elements function solve(n, d, input) { let a = new Array(N); // Stores frequencies let cnt = new Array(V + 1); // Stores the array elements for (let i = 0; i < n; ++i) a[i] = input[i]; let answer = 0; // Count the frequencies of the // array elements for (let i = 0; i < d; ++i) cnt[a[i]]++; // Iterating from d to n-1 index // means (d+1)th element to nth element for (let i = d; i <= n - 1; ++i) { // To check the median let acc = 0; let low_median = -1, high_median = -1; // Iterate over the frequencies // of the elements for (let v = 0; v <= V; ++v) { // Add the frequencies acc += cnt[v]; // Check if the low_median value is // obtained or not, if yes then do // not change as it will be minimum if (low_median == -1 && acc >= parseInt(Math.floor((d + 1) / 2.0))) low_median = v; // Check if the high_median value is // obtained or not, if yes then do not // change it as it will be maximum if (high_median == -1 && acc >= parseInt(Math.ceil((d + 1) / 2.0))) high_median = v; } // Store 2 * median of K trailing elements let double_median = low_median + high_median; // If the current >= 2 * median if (a[i] >= double_median) answer++; // Decrease the frequency for (k-1)-th element cnt[a[i - d]]--; // Increase the frequency of the // current element cnt[a[i]]++; } // Print the count document.write(answer); } // Driver Code let input = [ 1, 2, 2, 4, 5 ]; let n = input.length; let k = 3; solve(n, k, input); // This code is contributed by subham348 </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Please Login to comment...