Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count numbers that don’t contain 3

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a number n, write a function that returns count of numbers from 1 to n that don’t contain digit 3 in their decimal representation. 
Examples: 
 

Input: n = 10
Output: 9 

Input: n = 45
Output: 31 
// Numbers 3, 13, 23, 30, 31, 32, 33, 34, 
// 35, 36, 37, 38, 39, 43 contain digit 3. 

Input: n = 578
Output: 385

 

We strongly recommend that you click here and practice it, before moving on to the solution.

Solution: 
We can solve it recursively. Let count(n) be the function that counts such numbers. 
 

'msd' --> the most significant digit in n 
'd'   --> number of digits in n.

count(n) = n if n < 3

count(n) = n - 1 if 3 <= n  10 and msd is not 3

count(n) = count( msd * (10^(d-1)) - 1) 
           if n > 10 and msd is 3

 

Let us understand the solution with n = 578. 
count(578) = 4*count(99) + 4 + count(78)
The middle term 4 is added to include numbers 
100, 200, 400 and 500.

Let us take n = 35 as another example.  
count(35) = count (3*10 - 1) = count(29)

 

C++




#include <bits/stdc++.h>
using namespace std;
  
/* returns count of numbers which are 
in range from 1 to n and don't contain 3 
as a digit */
int count(int n) 
    // Base cases (Assuming n is not negative) 
    if (n < 3) 
        return n; 
    if (n >= 3 && n < 10) 
        return n-1; 
  
    // Calculate 10^(d-1) (10 raise to the power d-1) where d is 
    // number of digits in n. po will be 100 for n = 578 
    int po = 1; 
    while (n/po > 9) 
        po = po*10; 
  
    // find the most significant digit (msd is 5 for 578) 
    int msd = n/po; 
  
    if (msd != 3) 
        // For 578, total will be 4*count(10^2 - 1) + 4 + count(78) 
        return count(msd)*count(po - 1) + count(msd) + count(n%po); 
    else
        // For 35, total will be equal to count(29) 
        return count(msd*po - 1); 
  
// Driver code 
int main() 
    cout << count(578) << " "
    return 0; 
  
// This code is contributed by rathbhupendra


C




#include <stdio.h>
  
/* returns count of numbers which are in range from 1 to n and don't contain 3 
   as a digit */
int count(int n)
{
    // Base cases (Assuming n is not negative)
    if (n < 3)
        return n;
    if (n >= 3 && n < 10)
       return n-1;
  
    // Calculate 10^(d-1) (10 raise to the power d-1) where d is
    // number of digits in n. po will be 100 for n = 578
    int po = 1;
    while (n/po > 9)
        po = po*10;
  
    // find the most significant digit (msd is 5 for 578)
    int msd = n/po;
  
    if (msd != 3)
      // For 578, total will be 4*count(10^2 - 1) + 4 + count(78)
      return count(msd)*count(po - 1) + count(msd) + count(n%po);
    else
      // For 35, total will be equal to count(29)
      return count(msd*po - 1);
}
  
// Driver program to test above function
int main()
{
    printf ("%d ", count(578));
    return 0;
}


Java




// Java program to count numbers that not contain 3
import java.io.*;
  
class GFG 
{
    // Function that returns count of numbers which 
    // are in range from 1 to n 
    // and not contain 3 as a digit
    static int count(int n)
    {
        // Base cases (Assuming n is not negative)
        if (n < 3)
            return n;
        if (n >= 3 && n < 10)
            return n-1;
   
        // Calculate 10^(d-1) (10 raise to the power d-1) where d is
        // number of digits in n. po will be 100 for n = 578
        int po = 1;
        while (n/po > 9)
            po = po*10;
   
        // find the most significant digit (msd is 5 for 578)
        int msd = n/po;
   
        if (msd != 3)
            // For 578, total will be 4*count(10^2 - 1) + 4 + count(78)
            return count(msd)*count(po - 1) + count(msd) + count(n%po);
        else
            // For 35, total will be equal to count(29)
            return count(msd*po - 1);
    }
      
    // Driver program
    public static void main (String[] args) 
    {
        int n = 578;
        System.out.println(count(n));
    }
}
  
// Contributed by Pramod Kumar


Python3




# Python program to count numbers upto n that don't contain 3
  
# Returns count of numbers which are in range from 1 to n
# and don't contain 3 as a digit
def count(n):
      
    # Base Cases ( n is not negative)
    if n < 3:
        return n
    elif n >= 3 and n < 10:
        return n-1
          
    # Calculate 10^(d-1) ( 10 raise to the power d-1 ) where d
    # is number of digits in n. po will be 100 for n = 578
      
    po = 1
    while n//po > 9:
        po = po * 10
      
    # Find the MSD ( msd is 5 for 578 )
    msd = n//po
      
    if msd != 3:
        # For 578, total will be 4*count(10^2 - 1) + 4 + count(78)
        return count(msd) * count(po-1) + count(msd) + count(n%po)
    else:
        # For 35 total will be equal to count(29)
        return count(msd * po - 1)
          
# Driver Program
n = 578
print (count(n))
  
# Contributed by Harshit Agrawal


C#




// C# program to count numbers that not
// contain 3
using System;
  
class GFG {
      
    // Function that returns count of 
    // numbers which are in range from 
    // 1 to n and not contain 3 as a
    // digit
    static int count(int n)
    {
          
        // Base cases (Assuming n is 
        // not negative)
        if (n < 3)
            return n;
        if (n >= 3 && n < 10)
            return n-1;
  
        // Calculate 10^(d-1) (10 raise 
        // to the power d-1) where d is
        // number of digits in n. po will
        // be 100 for n = 578
        int po = 1;
          
        while (n / po > 9)
            po = po * 10;
  
        // find the most significant 
        // digit (msd is 5 for 578)
        int msd = n / po;
  
        if (msd != 3)
          
            // For 578, total will be
            // 4*count(10^2 - 1) + 4 +
            // count(78)
            return count(msd) * count(po - 1) 
                + count(msd) + count(n % po);
        else
          
            // For 35, total will be equal 
            // to count(29)
            return count(msd * po - 1);
    }
      
    // Driver program
    public static void Main () 
    {
        int n = 578;
          
        Console.Write(count(n));
    }
}
  
// This code is contributed by Sam007.


PHP




<?php
/* returns count of numbers which are in range 
from 1 to n and don't contain 3 as a digit */
function count1($n)
{
      
    // Base cases (Assuming n is not negative)
    if ($n < 3)
        return $n;
    if ($n >= 3 && $n < 10)
        return $n-1;
  
    // Calculate 10^(d-1) (10 raise to the 
    // power d-1) where d is number of digits 
    // in n. po will be 100 for n = 578
    $po = 1;
    for($x = intval($n/$po); $x > 9; $x = intval($n/$po))
        $po = $po*10;
  
    // find the most significant digit (msd is 5 for 578)
    $msd = intval($n / $po);
  
    if ($msd != 3)
      
    // For 578, total will be 4*count(10^2 - 1)
    // + 4 + count(78)
    return count1($msd) * count1($po - 1) +
                count1($msd) + count1($n%$po);
    else
      
    // For 35, total will be equal to count(29)
    return count1($msd*$po - 1);
}
  
// Driver program to test above function
    echo count1(578);
  
// This code is contributed by mits.
?>


Javascript




<script>
// javascript program to count numbers that not contain 3
    // Function that returns count of numbers which
    // are in range from 1 to n
    // and not contain 3 as a digit
    function count(n)
    {
      
        // Base cases (Assuming n is not negative)
        if (n < 3)
            return n;
        if (n >= 3 && n < 10)
            return n - 1;
  
        // Calculate 10^(d-1) (10 raise to the power d-1) where d is
        // number of digits in n. po will be 100 for n = 578
        var po = 1;
        while (parseInt(n / po) > 9)
            po = po * 10;
  
        // find the most significant digit (msd is 5 for 578)
        var msd = parseInt (n / po);
  
        if (msd != 3)
          
            // For 578, total will be 4*count(10^2 - 1) + 4 + count(78)
            return count(msd) * count(po - 1) + count(msd) + count(n % po);
        else
          
            // For 35, total will be equal to count(29)
            return count(msd * po - 1);
    }
  
    // Driver program
    var n = 578;
    document.write(count(n));
  
// This code is contributed by gauravrajput1
</script>


Output: 

385

Time Complexity: O(log10n)

Auxiliary Space: O(1),  since no extra space has been taken.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 


My Personal Notes arrow_drop_up
Last Updated : 16 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials