Count numbers in range such that digits in it and it’s product with q are unequal
Given a range of numbers [l, r] and an integer q. The task is to count all such number in the given range such that any digit of the number does not match with any digit in its product with the given number q.
Examples:
Input : l = 10, r = 12, q = 2
Output : 1
10*2 = 20 which has 0 as same digit
12*2 = 24 which as 2 as same digit
11*2 = 22 no same digitInput : l = 5, r = 15, q = 2
Output : 9
Source: Goldman Sachs Interview set 46
The idea is to run a loop from l to r to generate all numbers in the range and convert each such number n and it’s product with q, i.e. n*q to strings using to_string() method and then check if any character in string2 is present in string1 or not using basic string hashing.
Below is the implementation of the above approach:
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to check if all of the digits // in a number and it's product with q // are unequal or not bool checkIfUnequal( int n, int q) { // convert first number into string string s1 = to_string(n); int a[10] = { 0 }; // Insert elements from 1st number // to hash for ( int i = 0; i < s1.size(); i++) a[s1[i] - '0' ]++; // Calculate corresponding product int prod = n * q; // Convert the product to string string s2 = to_string(prod); // Using the hash check if any digit of // product matches with the digits of // input number for ( int i = 0; i < s2.size(); i++) { // If yes, return false if (a[s2[i] - '0' ]) return false ; } // Return true return true ; } // Function to count numbers in the range [l, r] // such that all of the digits of the number and // it's product with q are unequal int countInRange( int l, int r, int q) { int count = 0; for ( int i = l; i <= r; i++) { // check for every number between l and r if (checkIfUnequal(i, q)) count++; } return count; } // Driver Code int main() { int l = 10, r = 12, q = 2; // Function Call cout << countInRange(l, r, q); return 0; } |
Java
// Java program for above approach class GfG { // Function to check if all of the digits // in a number and it's product with q // are unequal or not static boolean checkIfUnequal( int n, int q) { // convert first number into string String s1 = Integer.toString(n); int a[] = new int [ 10 ]; // Insert elements from 1st number // to hash for ( int i = 0 ; i < s1.length(); i++) a[s1.charAt(i) - '0' ]++; // Calculate corresponding product int prod = n * q; // Convert the product to string String s2 = Integer.toString(prod); // Using the hash check if any digit of // product matches with the digits of // input number for ( int i = 0 ; i < s2.length(); i++) { // If yes, return false if (a[s2.charAt(i) - '0' ] > 0 ) return false ; } // else, return true return true ; } // Function to count numbers in the range [l, r] // such that all of the digits of the number and // it's product with q are unequal static int countInRange( int l, int r, int q) { int count = 0 ; for ( int i = l; i <= r; i++) { // check for every number between l and r if (checkIfUnequal(i, q)) count++; } return count; } // Driver Code public static void main(String[] args) { int l = 10 , r = 12 , q = 2 ; // Function Call System.out.println(countInRange(l, r, q)); } } |
Python3
# Python 3 program for above approach # Function to check if all of the digits # in a number and it's product with q # are unequal or not def checkIfUnequal(n, q): # convert first number into string s1 = str (n) a = [ 0 for i in range ( 10 )] # Insert elements from 1st number # to hash for i in range ( 0 , len (s1), 1 ): a[ ord (s1[i]) - ord ( '0' )] + = 1 # Calculate corresponding product prod = n * q # Convert the product to string s2 = str (prod) # Using the hash check if any digit of # product matches with the digits of # input number for i in range ( 0 , len (s2), 1 ): # If yes, return false if (a[ ord (s2[i]) - ord ( '0' )]): return False # Return true return True # Function to count numbers in the range [l, r] # such that all of the digits of the number and # it's product with q are unequal def countInRange(l, r, q): count = 0 for i in range (l, r + 1 , 1 ): # check for every number between l and r if (checkIfUnequal(i, q)): count + = 1 return count # Driver Code if __name__ = = '__main__' : l = 10 r = 12 q = 2 # Function call print (countInRange(l, r, q)) # This code is contributed by # Sahil_Shelangia |
C#
// C# program for above approach using System; class GfG { // Function to check if all of the digits // in a number and it's product with q // are unequal or not static bool checkIfUnequal( int n, int q) { // convert first number into string string s1 = n.ToString(); int [] a = new int [10]; // Insert elements from 1st number // to hash for ( int i = 0; i < s1.Length; i++) a[s1[i] - '0' ]++; // Calculate corresponding product int prod = n * q; // Convert the product to string string s2 = prod.ToString(); // Using the hash check if any digit of // product matches with the digits of // input number for ( int i = 0; i < s2.Length; i++) { // If yes, return false if (a[s2[i] - '0' ]) return false ; } // Else, return true return true ; } // Function to count numbers in the range [l, r] // such that all of the digits of the number and // it's product with q are unequal static int countInRange( int l, int r, int q) { int count = 0; for ( int i = l; i <= r; i++) { // check for every number between l and r if (checkIfUnequal(i, q)) count++; } return count; } // Driver Code public static void Main() { int l = 10, r = 12, q = 2; // Function call Console.WriteLine(countInRange(l, r, q)); } } // This code is contributed bt Archana_kumari |
PHP
// PHP program for above code // Function to check if all of the digits // in a number and it's product with q // are unequal or not function checkIfUnequal( $n , $q ) { // convert first number into string $s1 = strval ( $n ); $a = array_fill (0, 10, NULL); // Insert elements from 1st number // to hash for ( $i = 0; $i < strlen ( $s1 ); $i ++) $a [ord( $s1 [ $i ]) - ord( '0' )]++; // Calculate corresponding product $prod = $n * $q ; // Convert the product to string $s2 = strval ( $prod ); // Using the hash check if any digit of // product matches with the digits of // input number for ( $i = 0; $i < strlen ( $s2 ); $i ++) { // If yes, return false if ( $a [ord( $s2 [ $i ]) - ord( '0' )]) return false; } // Else, return true return true; } // Function to count numbers in the range // [l, r] such that all of the digits of the // number and it's product with q are unequal function countInRange( $l , $r , $q ) { $count = 0; for ( $i = $l ; $i <= $r ; $i ++) { // check for every number between l and r if (checkIfUnequal( $i , $q )) $count ++; } return $count ; } // Driver Code $l = 10; $r = 12; $q = 2; // Function call echo countInRange( $l , $r , $q ); // This code is contributed by ita_c ?> |
Javascript
<script> // Javascript program for above approach // Function to check if all of the digits // in a number and it's product with q // are unequal or not function checkIfUnequal(n,q) { // convert first number into string let s1 = n.toString(); let a = new Array(10); for (let i = 0; i < a.length; i++) { a[i] = 0; } // Insert elements from 1st number // to hash for (let i = 0; i < s1.length; i++) a[s1[i].charCodeAt(0) - '0 '.charCodeAt(0)]++; // Calculate corresponding product let prod = n * q; // Convert the product to string let s2 = prod.toString(); // Using the hash check if any digit of // product matches with the digits of // input number for (let i = 0; i < s2.length; i++) { // If yes, return false if (a[s2[i].charCodeAt(0) - ' 0 '.charCodeAt(0)] > 0) return false; } // else, return true return true; } // Function to count numbers in the range [l, r] // such that all of the digits of the number and // it' s product with q are unequal function countInRange(l,r,q) { let count = 0; for (let i = l; i <= r; i++) { // check for every number between l and r if (checkIfUnequal(i, q)) count++; } return count; } // Driver Code let l = 10, r = 12, q = 2; // Function Call document.write(countInRange(l, r, q)); // This code is contributed by avanitrachhadiya2155 </script> |
1
Time Complexity: O((r – l) * log10(r*q))
Auxiliary Space: O(log10(r*q))
Please Login to comment...