Skip to content
Related Articles
Open in App
Not now

Related Articles

Count number of squares in a rectangle

Improve Article
Save Article
Like Article
  • Difficulty Level : Medium
  • Last Updated : 13 Jun, 2022
Improve Article
Save Article
Like Article

Given a m x n rectangle, how many squares are there in it?

Examples : 

Input:  m = 2, n = 2
Output: 5
There are 4 squares of size 1x1 + 1 square of size 2x2.

Input: m = 4, n = 3
Output: 20
There are 12 squares of size 1x1 + 
          6 squares of size 2x2 + 
          2 squares of size 3x3.

squaresinREct

Recommended Practice

Let us first solve this problem for m = n, i.e., for a square:
For m = n = 1, output: 1
For m = n = 2, output: 4 + 1 [ 4 of size 1×1 + 1 of size 2×2 ]
For m = n = 3, output: 9 + 4 + 1 [ 9 of size 1×1 + 4 of size 2×2 + 1 of size 3×3 ]
For m = n = 4, output 16 + 9 + 4 + 1 [ 16 of size 1×1 + 9 of size 2×2 + 4 of size 3×3 + 1 of size 4×4 ]
In general, it seems to be n^2 + (n-1)^2 + … 1 = n(n+1)(2n+1)/6

Let us solve this problem when m may not be equal to n: 
Let us assume that m <= n

From above explanation, we know that number of squares in a m x m matrix is m(m+1)(2m+1)/6

What happens when we add a column, i.e., what is the number of squares in m x (m+1) matrix?

When we add a column, number of squares increased is m + (m-1) + … + 3 + 2 + 1 
[ m squares of size 1×1 + (m-1) squares of size 2×2 + … + 1 square of size m x m ] 
Which is equal to m(m+1)/2

So when we add (n-m) columns, total number of squares increased is (n-m)*m(m+1)/2.
So total number of squares is m(m+1)(2m+1)/6 + (n-m)*m(m+1)/2.
Using same logic we can prove when n <= m.

So, in general, 

Total number of squares = m x (m+1) x (2m+1)/6 + (n-m) x m x (m+1)/2 

when n is larger dimension

Using above logic for rectangle, we can also prove that number of squares in a square is n(n+1)(2n+1)/6

Below is the implementation of above formula. 

C++




// C++ program to count squares
// in a rectangle of size m x n
#include<iostream>
using namespace std;
 
// Returns count of all squares
// in a rectangle of size m x n
int countSquares(int m, int n)
{
// If n is smaller, swap m and n
if (n < m)
    swap(m, n);
 
// Now n is greater dimension,
// apply formula
return m * (m + 1) * (2 * m + 1) /
     6 + (n - m) * m *(m + 1) / 2;
}
 
// Driver Code
int main()
{
int m = 4, n = 3;
cout << "Count of squares is "
     << countSquares(m, n);
}


C




// C program to count squares
// in a rectangle of size m x n
 
#include <stdio.h>
 
// Returns count of all squares
// in a rectangle of size m x n
int countSquares(int m, int n)
{
  int temp;
// If n is smaller, swap m and n
  if (n < m)
  {
      temp=n;
      n=m;
      m=temp;
  }
  // Now n is greater dimension,
  // apply formula
  return m * (m + 1) * (2 * m + 1) /
      6 + (n - m) * m *(m + 1)/ 2;
}
 
// Driver Code
int main()
{
    int m = 4, n = 3;
    printf("Count of squares is %d",countSquares(m, n));
}
 
// This code is contributed by Hemant Jain.


Java




// Java program to count squares
// in a rectangle of size m x n
 
class GFG
{
    // Returns count of all squares
    // in a rectangle of size m x n
    static int countSquares(int m, int n)
    {
    // If n is smaller, swap m and n
    if (n < m)
    {
        // swap(m, n)
        int temp = m;
        m = n;
        n = temp;
    }
         
     
    // Now n is greater dimension,
    // apply formula
    return m * (m + 1) * (2 * m + 1) /
        6 + (n - m) * m * (m + 1) / 2;
    }
     
    // Driver Code
    public static void main(String[] args)
    {
        int m = 4, n = 3;
        System.out.println("Count of squares is " +
                            countSquares(m, n));
    }
}


Python3




# Python3 program to count squares
# in a rectangle of size m x n
 
# Returns count of all squares
# in a rectangle of size m x n
def countSquares(m, n):
     
    # If n is smaller, swap m and n
    if(n < m):
        temp = m
        m = n
        n = temp
         
    # Now n is greater dimension,
    # apply formula
    return ((m * (m + 1) * (2 * m + 1) /
           6 + (n - m) * m * (m + 1) / 2))
 
# Driver Code
if __name__=='__main__':
    m = 4
    n = 3
    print("Count of squares is "
         ,countSquares(m, n))
 
# This code is contributed by mits.


C#




// C# program to count squares in a rectangle
// of size m x n
using System;
 
class GFG {
     
    // Returns count of all squares in a
    // rectangle of size m x n
    static int countSquares(int m, int n)
    {
    // If n is smaller, swap m and n
    if (n < m)
    {
        // swap(m,n)
        int temp = m;
        m = n;
        n = temp;
    }
             
    // Now n is greater dimension, apply
    // formula
    return m * (m + 1) * (2 * m + 1) / 6 +
               (n - m) * m * (m + 1) / 2;
    }
     
    // Driver method
    public static void Main()
    {
        int m = 4, n = 3;
         
        Console.WriteLine("Count of squares is "
                          + countSquares(m, n));
    }
}
 
//This code is contributed by vt_m.


PHP




<?php
// PHP program to count squares
// in a rectangle of size m x n
 
// Returns count of all squares
// in a rectangle of size m x n
function countSquares($m, $n)
{
    // If n is smaller, swap m and n
    if ($n < $m)
        list($m, $n) = array($n, $m);
     
    // Now n is greater dimension,
    // apply formula
    return $m * ($m + 1) * (2 * $m + 1) /
       6 + ($n - $m) * $m * ($m + 1) / 2;
}
 
// Driver Code
$m = 4; $n = 3;
echo("Count of squares is " . countSquares($m, $n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// javascript program to count squares
// in a rectangle of size m x n
 
// Returns count of all squares
// in a rectangle of size m x n
function countSquares( m,  n)
{
 
// If n is smaller, swap m and n
if (n < m)
    [m, n] = [n, m];
 
// Now n is greater dimension,
// apply formula
return m * (m + 1) * (2 * m + 1) /
    6 + (n - m) * m *(m + 1) / 2;
}
 
// Driver Code
    let m = 4;
    let n = 3;
document.write("Count of squares is "+countSquares(n, m));
 
// This code is contributed by jana_sayantan.
</script>


Output : 

Count of Squares is 20

Time complexity: O(1)

Auxiliary Space: O(1)

Alternate Solution : 

  1. Let us take m = 2, n = 3;
  2. The number of squares of side 1 will be 6 as there will be two cases one as squares of 1-unit sides along with the horizontal(2) and the second case as squares of 1-unit sides along the vertical(3). that give us 2*3 = 6 squares.
  3. When the side is 2 units, one case will be as squares of the side of 2 units along only one place horizontally and the second case as two places vertically. So, the number of squares=2
  4. So we can deduce that, Number of squares of size 1*1 will be m*n. The number of squares of size 2*2 will be (n-1)(m-1). So like this, the number of squares of size n will be 1*(m-n+1).

The final formula for the total number of squares will be n*(n+1)(3m-n+1)/6 .

C++




// C++ program to count squares
// in a rectangle of size m x n
#include <iostream>
using namespace std;
 
// Returns count of all squares
// in a rectangle of size m x n
int countSquares(int m, int n)
{
 
    // If n is smaller, swap m and n
    if (n < m) {
        int temp = m;
        m = n;
        n = temp;
    }
 
    // Now n is greater dimension,
    // apply formula
    return n * (n + 1) * (3 * m - n + 1) / 6;
}
 
// Driver Code
int main()
{
    int m = 4, n = 3;
    cout << "Count of squares is " << countSquares(m, n);
}
 
// This code is contributed by 29AjayKumar


C




// C program to count squares
// in a rectangle of size m x n
 
#include <stdio.h>
 
// Returns count of all squares
// in a rectangle of size m x n
int countSquares(int m, int n)
{
 
    // If n is smaller, swap m and n
    if (n < m)
    {
        int temp = m;
        m = n;
        n = temp;
    }
 
    // Now n is greater dimension,
    // apply formula
    return n * (n + 1) * (3 * m - n + 1) / 6;
}
 
// Driver Code
int main()
{
    int m = 4, n = 3;
    printf("Count of squares is %d",countSquares(m, n));
}
 
// This code is contributed by Hemant Jain


Java




// Java program to count squares
// in a rectangle of size m x n
import java.util.*;
 
class GFG
{
 
    // Returns count of all squares
    // in a rectangle of size m x n
    static int countSquares(int m, int n)
    {
 
        // If n is smaller, swap m and n
        if (n < m)
        {
            int temp = m;
            m = n;
            n = temp;
        }
 
        // Now n is greater dimension,
        // apply formula
        return n * (n + 1) * (3 * m - n + 1) / 6;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int m = 4;
        int n = 3;
        System.out.print("Count of squares is " +
                             countSquares(m, n));
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to count squares
# in a rectangle of size m x n
 
# Returns count of all squares
# in a rectangle of size m x n
def countSquares(m, n):
     
    # If n is smaller, swap m and n
    if(n < m):
        temp = m
        m = n
        n = temp
         
    # Now n is greater dimension,
    # apply formula
    return n * (n + 1) * (3 * m - n + 1) // 6
 
# Driver Code
if __name__=='__main__':
    m = 4
    n = 3
    print("Count of squares is",
           countSquares(m, n))
 
# This code is contributed by AnkitRai01


C#




// C# program to count squares
// in a rectangle of size m x n
using System;
 
class GFG
{
 
    // Returns count of all squares
    // in a rectangle of size m x n
    static int countSquares(int m, int n)
    {
 
        // If n is smaller, swap m and n
        if (n < m)
        {
            int temp = m;
            m = n;
            n = temp;
        }
 
        // Now n is greater dimension,
        // apply formula
        return n * (n + 1) * (3 * m - n + 1) / 6;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int m = 4;
        int n = 3;
        Console.Write("Count of squares is " +
                          countSquares(m, n));
    }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to count squares
// in a rectangle of size m x n
 
// Returns count of all squares
// in a rectangle of size m x n
function countSquares(m , n)
{
     
    // If n is smaller, swap m and n
    if (n < m)
    {
        var temp = m;
        m = n;
        n = temp;
    }
 
    // Now n is greater dimension,
    // apply formula
    return n * (n + 1) * (3 * m - n + 1) / 6;
}
 
// Driver Code
var m = 4;
var n = 3;
 
document.write("Count of squares is " +
               countSquares(m, n));
 
// This code is contributed by shikhasingrajput
 
</script>


Output : 

Count of Squares is 20

Time complexity: O(1)

Auxiliary Space: O(1)

Thanks to Pranav for providing this alternate solution.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above. 


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!