Count distinct regular bracket sequences which are not N periodic
Given an integer N, the task is to find the number of distinct bracket sequences that can be formed using 2 * N brackets such that the sequence is not N-periodic.
A bracket sequence str of length 2 * N is said to be N-periodic if the sequence can be split into two equal substrings having same regular bracket sequence.
A regular bracket sequence is a sequence in the following way:
- An empty string is a regular bracket sequence.
- If s & t are regular bracket sequences, then s + t is a regular bracket sequence.
Examples:
Input: N = 3
Output: 5
Explanation:
There will be 5 distinct regular bracket sequences of length 2 * N = ()()(), ()(()), (())(), (()()), ((()))
Now, none of the sequences are N-periodic. Therefore, the output is 5.Input: N = 4
Output: 12
Explanation:
There will be 14 distinct regular bracket sequences of length 2*N which are
()()()(), ()()(()), ()(())(), ()(()()), ()((())), (())()(), (())(()), (()())(), (()()()), (()(())), ((()))(), ((())()), ((()())), (((())))
Out of these 14 regular sequences, two of them are N periodic which are
()()()() and (())(()). They have a period of N.
Therefore, the distinct regular bracket sequences of length 2 * N which are not N-periodic are 14 – 2 = 12.
Approach: The idea is to calculate the total number of regular bracket sequences possible of length 2 * N and then to subtract the number of bracket sequences which are N-periodic from it. Below are the steps:
- To find the number of regular bracket sequences of length 2*N, use the Catalan number formula.
- For a sequence of length 2*N to be N periodic, N should be even because if N is odd then the sequence of length 2*N cannot be a regular sequence and have a period of N at the same time.
- Since the concatenation of two similar non-regular bracket sequences cannot make a sequence regular, so both subsequences of length N should be regular.
- Reduce the number of regular bracket sequences of length N(if N is even) from the number of regular bracket sequences of length 2*N to get the desired result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function that finds the value of // Binomial Coefficient C(n, k) unsigned long int binomialCoeff(unsigned int n, unsigned int k) { unsigned long int res = 1; // Since C(n, k) = C(n, n - k) if (k > n - k) k = n - k; // Calculate the value of // [n*(n - 1)*---*(n - k + 1)] / // [k*(k - 1)*---*1] for ( int i = 0; i < k; ++i) { res *= (n - i); res /= (i + 1); } // Return the C(n, k) return res; } // Binomial coefficient based function to // find nth catalan number in O(n) time unsigned long int catalan(unsigned int n) { // Calculate value of 2nCn unsigned long int c = binomialCoeff(2 * n, n); // Return C(2n, n)/(n+1) return c / (n + 1); } // Function to find possible ways to // put balanced parenthesis in an // expression of length n unsigned long int findWays(unsigned n) { // If n is odd, not possible to // create any valid parentheses if (n & 1) return 0; // Otherwise return n/2th // Catalan Number return catalan(n / 2); } void countNonNPeriodic( int N) { // Difference between counting ways // of 2*N and N is the result cout << findWays(2 * N) - findWays(N); } // Driver Code int main() { // Given value of N int N = 4; // Function Call countNonNPeriodic(N); return 0; } |
Java
// Java program for above approach import java.io.*; class GFG{ // Function that finds the value of // Binomial Coefficient C(n, k) static long binomialCoeff( int n, int k) { long res = 1 ; // Since C(n, k) = C(n, n - k) if (k > n - k) k = n - k; // Calculate the value of // [n*(n - 1)*---*(n - k + 1)] / // [k*(k - 1)*---*1] for ( int i = 0 ; i < k; ++i) { res *= (n - i); res /= (i + 1 ); } // Return the C(n, k) return res; } // Binomial coefficient based function to // find nth catalan number in O(n) time static long catalan( int n) { // Calculate value of 2nCn long c = binomialCoeff( 2 * n, n); // Return C(2n, n)/(n+1) return c / (n + 1 ); } // Function to find possible ways to // put balanced parenthesis in an // expression of length n static long findWays( int n) { // If n is odd, not possible to // create any valid parentheses if ((n & 1 ) == 1 ) return 0 ; // Otherwise return n/2th // Catalan Number return catalan(n / 2 ); } static void countNonNPeriodic( int N) { // Difference between counting ways // of 2*N and N is the result System.out.println(findWays( 2 * N) - findWays(N)); } // Driver code public static void main (String[] args) { // Given value of N int N = 4 ; // Function call countNonNPeriodic(N); } } // This code is contributed by offbeat |
Python3
# Python3 program for # the above approach # Function that finds the value of # Binomial Coefficient C(n, k) def binomialCoeff(n, k): res = 1 # Since C(n, k) = C(n, n - k) if (k > n - k): k = n - k # Calculate the value of # [n*(n - 1)*---*(n - k + 1)] / # [k*(k - 1)*---*1] for i in range (k): res = res * (n - i) res = res / / (i + 1 ) # Return the C(n, k) return res # Binomial coefficient based function to # find nth catalan number in O(n) time def catalan(n): # Calculate value of 2nCn c = binomialCoeff( 2 * n, n) # Return C(2n, n)/(n+1) return c / / (n + 1 ) # Function to find possible ways to # put balanced parenthesis in an # expression of length n def findWays(n): # If n is odd, not possible to # create any valid parentheses if ((n & 1 ) = = 1 ): return 0 # Otherwise return n/2th # Catalan Number return catalan(n / / 2 ) def countNonNPeriodic(N): # Difference between counting ways # of 2*N and N is the result print (findWays( 2 * N) - findWays(N)) # Driver code # Given value of N N = 4 # Function call countNonNPeriodic(N) # This code is contributed by divyeshrabadiya07 |
C#
// C# program for above approach using System; using System.Collections.Generic; class GFG{ // Function that finds the value of // Binomial Coefficient C(n, k) static long binomialCoeff( int n, int k) { long res = 1; // Since C(n, k) = C(n, n - k) if (k > n - k) k = n - k; // Calculate the value of // [n*(n - 1)*---*(n - k + 1)] / // [k*(k - 1)*---*1] for ( int i = 0; i < k; ++i) { res *= (n - i); res /= (i + 1); } // Return the C(n, k) return res; } // Binomial coefficient based function to // find nth catalan number in O(n) time static long catalan( int n) { // Calculate value of 2nCn long c = binomialCoeff(2 * n, n); // Return C(2n, n)/(n+1) return c / (n + 1); } // Function to find possible ways to // put balanced parenthesis in an // expression of length n static long findWays( int n) { // If n is odd, not possible to // create any valid parentheses if ((n & 1) == 1) return 0; // Otherwise return n/2th // Catalan Number return catalan(n / 2); } static void countNonNPeriodic( int N) { // Difference between counting ways // of 2*N and N is the result Console.Write(findWays(2 * N) - findWays(N)); } // Driver Code public static void Main( string [] args) { // Given value of N int N = 4; // Function call countNonNPeriodic(N); } } // This code is contributed by rutvik_56 |
Javascript
<script> // Javascript program for the above approach // Function that finds the value of // Binomial Coefficient C(n, k) function binomialCoeff(n, k) { let res = 1; // Since C(n, k) = C(n, n - k) if (k > n - k) k = n - k; // Calculate the value of // [n*(n - 1)*---*(n - k + 1)] / // [k*(k - 1)*---*1] for (let i = 0; i < k; ++i) { res *= (n - i); res /= (i + 1); } // Return the C(n, k) return res; } // Binomial coefficient based function to // find nth catalan number in O(n) time function catalan(n) { // Calculate value of 2nCn let c = binomialCoeff(2 * n, n); // Return C(2n, n)/(n+1) return c / (n + 1); } // Function to find possible ways to // put balanced parenthesis in an // expression of length n function findWays(n) { // If n is odd, not possible to // create any valid parentheses if (n & 1) return 0; // Otherwise return n/2th // Catalan Number return catalan(n / 2); } function countNonNPeriodic(N) { // Difference between counting ways // of 2*N and N is the result document.write(findWays(2 * N) - findWays(N)); } // Driver Code // Given value of N let N = 4; // Function Call countNonNPeriodic(N); // This code is contributed by Mayank Tyagi </script> |
12
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...