Count ancestors with smaller value for each node of a Binary Tree
Given a Binary Tree consisting of N nodes, valued from 1 to N, rooted at node 1, the task is for each node is to count the number of ancestors with a value smaller than that of the current node.
Examples:
Input: Below is the given Tree:
1
/ \
4 5
/ /\
6 3 2
Output: 0 1 1 1 1 2
Explanation:
Since node 1 is the root node, it has no ancestors.
Ancestors of node 2: {1, 5}. Number of ancestors having value smaller than 2 is 1.
Ancestors of node 3: {1, 5}. Number of ancestors having value smaller than 3 is 1.
Ancestors of node 4: {1}. Number of ancestors having value smaller than 4 is 1.
Ancestors of node 5: {1}. Number of ancestors having value smaller than 5 is 1.
Ancestors of node 6: {1, 4}. Number of ancestors having value smaller than 6 is 2.Input: Below is the given Tree:
1
/ \
3 2
\
4
Output: 0 1 1 2
Explanation:
Node 1 has no ancestors.
Ancestors of node 2: {1}. Number of ancestors having value smaller than 2 is 1.
Ancestors of node 3: {1}. Number of ancestors having value smaller than 3 is 1.
Ancestors of node 4: {1, 2}. Number of ancestors having value smaller than 4 is 2.
Approach: The idea is to perform DFS traversal from the root node of the Tree and store the immediate parent of each node in an array. Then iterate over each node and using the parent array, compare its value with all its ancestors. Finally, print the result.
Follow the steps below to solve the problem:
- Initialize an array, say par[] of size N, with -1, to store the immediate parent of each node.
- Perform DFS traversal from the root node and perform the following steps:
- Update the parent of the current node.
- Recursively call the children of the current node.
- Now, iterate over the range [1, N] using a variable i and perform the following steps:
- Store the current node in a variable, say node.
- Iterate while par[node] is not equal to -1:
- If par[node] is less than i, then increment cnt by 1.
- Update node as par[node].
- After completing the above steps, print the value of cnt as the value for the current node.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to add an edge // between nodes u and v void add_edge(vector< int > adj[], int u, int v) { adj[u].push_back(v); adj[v].push_back(u); } // Function to perform the DFS Traversal // and store parent of each node void dfs(vector< int >& parent, vector< int > adj[], int u, int par = -1) { // Store the immediate parent parent[u] = par; // Traverse the children of // the current node for ( auto child : adj[u]) { // Recursively call for // function dfs for the // child node if (child != par) dfs(parent, adj, child, u); } } // Function to count the number of // ancestors with values smaller // than that of the current node void countSmallerAncestors( vector< int > adj[], int n) { // Stores the parent of each node vector< int > parent( int (1e5), 0); // Perform the DFS Traversal dfs(parent, adj, 1); // Traverse all the nodes for ( int i = 1; i <= n; i++) { int node = i; // Store the number of ancestors // smaller than node int cnt = 0; // Loop until parent[node] != -1 while (parent[node] != -1) { // If the condition satisfies, // increment cnt by 1 if (parent[node] < i) cnt += 1; node = parent[node]; } // Print the required result // for the current node cout << cnt << " " ; } } // Driver Code int main() { int N = 6; vector< int > adj[ int (1e5)]; // Tree Formation add_edge(adj, 1, 5); add_edge(adj, 1, 4); add_edge(adj, 4, 6); add_edge(adj, 5, 3); add_edge(adj, 5, 2); countSmallerAncestors(adj, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Function to add an edge // between nodes u and v static void add_edge(ArrayList<ArrayList<Integer>> adj, int u, int v) { adj.get(u).add(v); adj.get(v).add(u); } // Function to perform the DFS Traversal // and store parent of each node static void dfs(ArrayList<Integer> parent, ArrayList<ArrayList<Integer>> adj, int u, int par) { // Store the immediate parent parent.set(u,par); // Traverse the children of // the current node for ( int child : adj.get(u)) { // Recursively call for // function dfs for the // child node if (child != par) dfs(parent, adj, child, u); } } // Function to count the number of // ancestors with values smaller // than that of the current node static void countSmallerAncestors( ArrayList<ArrayList<Integer>> adj, int n) { // Stores the parent of each node ArrayList<Integer> parent = new ArrayList<Integer>(); for ( int i = 0 ; i < ( int )(1e5); i++) { parent.add( 0 ); } // Perform the DFS Traversal dfs(parent, adj, 1 , - 1 ); // Traverse all the nodes for ( int i = 1 ; i <= n; i++) { int node = i; // Store the number of ancestors // smaller than node int cnt = 0 ; // Loop until parent[node] != -1 while (parent.get(node) != - 1 ) { // If the condition satisfies, // increment cnt by 1 if (parent.get(node) < i) cnt += 1 ; node = parent.get(node); } // Print the required result // for the current node System.out.print(cnt + " " ); } } // Driver code public static void main (String[] args) { int N = 6 ; ArrayList<ArrayList<Integer>> adj = new ArrayList<ArrayList<Integer>>(); for ( int i = 0 ; i < ( int )(1e5); i++) { adj.add( new ArrayList<Integer>()); } // Tree Formation add_edge(adj, 1 , 5 ); add_edge(adj, 1 , 4 ); add_edge(adj, 4 , 6 ); add_edge(adj, 5 , 3 ); add_edge(adj, 5 , 2 ); countSmallerAncestors(adj, N); } } // This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 program for the above approach # Function to add an edge # between nodes u and v def add_edge(u, v): global adj adj[u].append(v) adj[v].append(u) # Function to perform the DFS Traversal # and store parent of each node def dfs(u, par = - 1 ): global adj, parent # Store the immediate parent parent[u] = par # Traverse the children of # the current node for child in adj[u]: # Recursively call for # function dfs for the # child node if (child ! = par): dfs(child, u) # Function to count the number of # ancestors with values smaller # than that of the current node def countSmallerAncestors(n): global parent, adj # Stores the parent of each node # Perform the DFS Traversal dfs( 1 ) # Traverse all the nodes for i in range ( 1 , n + 1 ): node = i # Store the number of ancestors # smaller than node cnt = 0 # Loop until parent[node] != -1 while (parent[node] ! = - 1 ): # If the condition satisfies, # increment cnt by 1 if (parent[node] < i): cnt + = 1 node = parent[node] # Print the required result # for the current node print (cnt, end = " " ) # Driver Code if __name__ = = '__main__' : N = 6 adj = [[] for i in range ( 10 * * 5 )] parent = [ 0 ] * ( 10 * * 5 ) # Tree Formation add_edge( 1 , 5 ) add_edge( 1 , 4 ) add_edge( 4 , 6 ) add_edge( 5 , 3 ) add_edge( 5 , 2 ) countSmallerAncestors(N) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to add an edge // between nodes u and v static void add_edge(List<List< int >> adj, int u, int v) { adj[u].Add(v); adj[v].Add(u); } // Function to perform the DFS Traversal // and store parent of each node static void dfs(List< int > parent, List<List< int >> adj, int u, int par = -1) { // Store the immediate parent parent[u] = par; // Traverse the children of // the current node foreach ( int child in adj[u]) { // Recursively call for // function dfs for the // child node if (child != par) dfs(parent, adj, child, u); } } // Function to count the number of // ancestors with values smaller // than that of the current node static void countSmallerAncestors( List<List< int >> adj, int n) { // Stores the parent of each node List< int > parent = new List< int >(); for ( int i = 0; i < ( int )(1e5); i++) { parent.Add(0); } // Perform the DFS Traversal dfs(parent, adj, 1); // Traverse all the nodes for ( int i = 1; i <= n; i++) { int node = i; // Store the number of ancestors // smaller than node int cnt = 0; // Loop until parent[node] != -1 while (parent[node] != -1) { // If the condition satisfies, // increment cnt by 1 if (parent[node] < i) cnt += 1; node = parent[node]; } // Print the required result // for the current node Console.Write(cnt + " " ); } } static void Main() { int N = 6; List<List< int >> adj = new List<List< int >>(); for ( int i = 0; i < ( int )(1e5); i++) { adj.Add( new List< int >()); } // Tree Formation add_edge(adj, 1, 5); add_edge(adj, 1, 4); add_edge(adj, 4, 6); add_edge(adj, 5, 3); add_edge(adj, 5, 2); countSmallerAncestors(adj, N); } } |
Javascript
<script> // JavaScript program for the above approach // Function to add an edge // between nodes u and v function add_edge(adj, u, v) { adj[u].push(v); adj[v].push(u); } // Function to perform the DFS Traversal // and store parent of each node function dfs(parent, adj, u, par = -1) { // Store the immediate parent parent[u] = par; // Traverse the children of // the current node adj[u].forEach(child => { // Recursively call for // function dfs for the // child node if (child != par) dfs(parent, adj, child, u); }); } // Function to count the number of // ancestors with values smaller // than that of the current node function countSmallerAncestors(adj, n) { // Stores the parent of each node var parent = Array(100000).fill(0); // Perform the DFS Traversal dfs(parent, adj, 1); // Traverse all the nodes for ( var i = 1; i <= n; i++) { var node = i; // Store the number of ancestors // smaller than node var cnt = 0; // Loop until parent[node] != -1 while (parent[node] != -1) { // If the condition satisfies, // increment cnt by 1 if (parent[node] < i) cnt += 1; node = parent[node]; } // Print the required result // for the current node document.write( cnt + " " ); } } // Driver Code var N = 6; var adj = Array.from(Array(100000), ()=>Array()); // Tree Formation add_edge(adj, 1, 5); add_edge(adj, 1, 4); add_edge(adj, 4, 6); add_edge(adj, 5, 3); add_edge(adj, 5, 2); countSmallerAncestors(adj, N); </script> |
0 1 1 1 1 2
Time Complexity: O(N2)
Auxiliary Space: O(N)
Please Login to comment...