Count all possible unique sum of series K, K+1, K+2, K+3, K+4, …, K+N
Given a number N and for any number K for a series formed as K, K + 1, K + 2, K + 3, K + 4, ……., K + N. The task is to find the number of unique sums that can be obtained by adding two or more integers from the series of N + 1 integers.
Examples:
Input: N = 3
Output: 10
Explanation:
The possible unique combinations are:
(K) + (K + 1) = 2*K + 1
(K) + (K + 2) = 2*K + 2
(K) + (K + 3) = 2*K + 3
(K + 1) + (K + 3) = 2*K + 4
(K + 2) + (K + 3) = 2*K + 5
(K) + (K + 1) + (K + 2) = 3*K + 3
(K) + (K + 1) + (K + 3) = 3*K + 4
(K) + (K + 2) + (K + 3) = 3*K + 5
(K + 1) + (K + 2) + (K + 3) = 3*K + 6
(K) + (K + 1) + (K + 2) + (K + 3) = 4*K + 6
So in total, there are 10 unique ways.
Input: N = 4
Output: 20
Explanation:
The possible unique combinations are 20 in number.
Approach: The following observations are to be made:
- Since K is number the only significance it has is that two subsets with different sizes cannot have the same sum.
- A unique sum can be obtained from the minimum possible sum of the subset to the maximum possible sum of subset having size as X where (2 ≤ X ≤ (N + 1)).
For Example:N = 4
The Series is = {K, K + 1, K + 2, K + 3, K + 4}
For K = 2, minimum_sum = (K, K + 1) = 2*K + 1
and maximum_sum = (K + 3, K + 4) = 2*K + 7
The maximum distinct sums possible with K = 2 are (maximum_sum – minimum_sum + 1) = (7 – 1 + 1) = 7.
Follow the steps below to solve the problem:
- Initialize two arrays array fsum[] and rsum[] each of size N + 1 to 0.
- For each element of both the arrays fsum[] and rsum[], update fsum[i] with ar[i] + fsum[i – 1] and rsum[i] with ar[i] + fsum[i + 1].
- Initialize a variable ans to 1 that stores the count of different possible sums of the given series.
- For each possible subset size X, where (2 ≤ X ≤ (N + 1)), add the value 1 + rsum[n + 1 – k] + fsum[k] to ans.
- The value of ans is the required answer hence return it.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count the unique sum int count_unique_sum( int n) { int i, ar[n + 1], fsum[n + 1]; int rsum[n + 1], ans = 1; // Initialize array fsum[] with 0 memset (fsum, 0, sizeof fsum); // Initialize array rsum[] with 0 memset (rsum, 0, sizeof rsum); for (i = 0; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[0] = ar[0]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1; i >= 0; i--) { rsum[i] = ar[i] + rsum[i + 1]; } // K represent size of subset as // explained above for ( int k = 2; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1]; } // Return the result return ans; } // Driver Code int main() { // Given a number N int N = 4; // Function Call cout << count_unique_sum(N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to count the unique sum static int count_unique_sum( int n) { int i; int ar[] = new int [n + 1 ]; int fsum[] = new int [n + 1 ]; int rsum[] = new int [n + 1 ]; int ans = 1 ; // Initialize array fsum[] with 0 Arrays.fill(fsum, 0 ); // Initialize array rsum[] with 0 Arrays.fill(rsum, 0 ); for (i = 0 ; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[ 0 ] = ar[ 0 ]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1 ; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1 ]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1 ; i >= 0 ; i--) { rsum[i] = ar[i] + rsum[i + 1 ]; } // K represent size of subset as // explained above for ( int k = 2 ; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1 ]; } // Return the result return ans; } // Driver Code public static void main(String[] args) { // Given a number N int N = 4 ; // Function Call System.out.print(count_unique_sum(N)); } } // This code is contributed by rock__cool |
Python3
# Python3 program for the above approach # Function to count the unique sum def count_unique_sum(n): ar = [ 0 ] * (n + 1 ) fsum = [ 0 ] * (n + 1 ) rsum = [ 0 ] * (n + 1 ) ans = 1 for i in range ( 0 , n + 1 ): ar[i] = i # Set fsum[0] as ar[0] fsum[ 0 ] = ar[ 0 ] # Set rsum[0] as ar[n] rsum[n] = ar[n] # For each i update fsum[i] with # ar[i] + fsum[i - 1] for i in range ( 1 , n + 1 ): fsum[i] = ar[i] + fsum[i - 1 ] # For each i from n-1, update # rsum[i] with ar[i] + fsum[i + 1] for i in range (n - 1 , - 1 , - 1 ): rsum[i] = ar[i] + rsum[i + 1 ] # K represent size of subset as # explained above for k in range ( 2 , n + 1 ): # Using above relation ans + = ( 1 + rsum[n + 1 - k] - fsum[k - 1 ]) # Return the result return ans # Driver Code # Given a number N N = 4 # Function call print (count_unique_sum(N)) # This code is contributed by sanjoy_62 |
C#
// C# program for the above approach using System; class GFG{ // Function to count the unique sum static int count_unique_sum( int n) { int i; int []ar = new int [n + 1]; int []fsum = new int [n + 1]; int []rsum = new int [n + 1]; int ans = 1; for (i = 0; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[0] = ar[0]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1; i >= 0; i--) { rsum[i] = ar[i] + rsum[i + 1]; } // K represent size of subset as // explained above for ( int k = 2; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1]; } // Return the result return ans; } // Driver Code public static void Main(String[] args) { // Given a number N int N = 4; // Function Call Console.Write(count_unique_sum(N)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program for the above approach // Function to count the unique sum function count_unique_sum(n) { let i; let ans = 1; let ar = new Array(n + 1); let fsum = new Array(n + 1); let rsum = new Array(n + 1); // Initialize array fsum[] with 0 fsum.fill(0); // Initialize array rsum[] with 0 rsum.fill(0); for (i = 0; i <= n; i++) { ar[i] = i; } // Set fsum[0] as ar[0] fsum[0] = ar[0]; // Set rsum[0] as ar[n] rsum[n] = ar[n]; // For each i update fsum[i] with // ar[i] + fsum[i - 1] for (i = 1; i <= n; i++) { fsum[i] = ar[i] + fsum[i - 1]; } // For each i from n-1, update // rsum[i] with ar[i] + fsum[i + 1] for (i = n - 1; i >= 0; i--) { rsum[i] = ar[i] + rsum[i + 1]; } // K represent size of subset as // explained above for (let k = 2; k <= n; k++) { // Using above relation ans += 1 + rsum[n + 1 - k] - fsum[k - 1]; } // Return the result return ans; } // Given a number N let N = 4; // Function Call document.write(count_unique_sum(N)); //This code is contributed by suresh07. </script> |
20
Time Complexity: O(N)
Auxiliary Space: O(N), since N extra space has been taken.
Please Login to comment...