Skip to content
Related Articles

Related Articles

Count all distinct pairs with difference equal to K | Set 2

Improve Article
Save Article
  • Last Updated : 14 Apr, 2022
Improve Article
Save Article

Given an integer array arr[] and a positive integer K, the task is to count all distinct pairs with differences equal to K.

Examples:

Input: arr[ ] = {1, 5, 3, 4, 2}, K = 3
Output: 2
Explanation: There are 2 distinct pairs with difference 3, the pairs are {1, 4} and {5, 2} 

Input: arr[] = {8, 12, 16, 4, 0, 20}, K = 4
Output: 5
Explanation: There are 5 unique pairs with difference 4. 
The pairs are {0, 4}, {4, 8}, {8, 12}, {12, 16} and {16, 20}

 

The naive approach and approach based on sorting and binary search are mentioned on the Set 1 of this article.

Approach: The time complexity for this problem can be reduced to have a linear complexity in average case by using hashing with the help of unordered maps as per the following idea:

For forming such unique pairs, if traversed from the smallest element, an element (say x) will form such a pair with another element having value (x+K).
When the difference K = 0 then the elements having frequency more than 1 will be able to form pairs with itself.

Follow the steps mentioned below to solve the problem:

  • Initialize an unordered map and push all the array elements into the map.
  • If the given value of K is 0:
    • If the frequency of current element x is greater than 1, increment count by 1.
    • Else try the same for the other elements.
  • If the given value of K is not 0:
    • Search x + K in the map and if it is found, increment the count by 1.
    • Else try for the other elements.
  • Return the count.

Below is the implementation of the above approach.

C++




// C++ code to implement the above approach.
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find total pairs
int TotalPairs(vector<int> nums, int K)
{
    // Initializing a map
    unordered_map<int, int> mp;
    int cnt = 0;
 
    for (int i = 0; i < nums.size(); i++) {
        mp[nums[i]]++;
    }
 
    // Difference equal to zero
    if (K == 0) {
        for (auto i : mp) {
 
            // Frequency of element is
            // greater than one then
            // distinct pair is possible
            if (i.second > 1)
                cnt++;
        }
    }
 
    // Difference is not equal to zero
    else {
        for (auto i : mp) {
 
            // Frequency of element + k
            // is not zero then distinct
            // pair is possible
            if (mp.find(i.first + K)
                != mp.end()) {
                cnt++;
            }
        }
    }
    return cnt;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 8, 12, 16, 4, 0, 20 };
    int K = 4;
 
    // Function call
    int ans = TotalPairs(arr, K);
    cout << ans;
    return 0;
}


Java




// Java code to implement the above approach.
import java.io.*;
import java.util.*;
 
class GFG {
    // Function to find total pairs
    public static int TotalPairs(int nums[], int K)
    {
        // Initializing a map
        Map<Integer, Integer> mp
            = new HashMap<Integer, Integer>();
        int cnt = 0;
 
        for (int i = 0; i < nums.length; i++) {
            if (mp.get(nums[i]) != null)
                mp.put(nums[i], mp.get(nums[i]) + 1);
            else
                mp.put(nums[i], 1);
        }
 
        // Difference equal to zero
        if (K == 0) {
            for (Map.Entry<Integer, Integer> it :
                 mp.entrySet()) {
 
                // Frequency of element is
                // greater than one then
                // distinct pair is possible
                if (it.getValue() > 1)
                    cnt++;
            }
        }
 
        // Difference is not equal to zero
        else {
            for (Map.Entry<Integer, Integer> it :
                 mp.entrySet()) {
 
                // Frequency of element + k
                // is not zero then distinct
                // pair is possible
                if (mp.get(it.getKey() + K) != null) {
                    cnt++;
                }
            }
        }
        return cnt;
    }
    public static void main(String[] args)
    {
        int arr[] = { 8, 12, 16, 4, 0, 20 };
        int K = 4;
 
        // Function call
        int ans = TotalPairs(arr, K);
        System.out.print(ans);
    }
}
 
// This code is contributed by Rohit Pradhan


Python3




# Python3 program for above approach
 
# function to find total pairs
def TotalPairs(nums, K):
   
    # Initializing a map or dictionary
    mp = dict()
    cnt = 0
    for i in range(len(nums)):
        if nums[i] in mp:
            mp[nums[i]] += 1
        else:
            mp[nums[i]] = 1
 
    # Difference equal to zero
    if K == 0:
        for i in mp:
            # Frequency of element is
            # greater than one then
            # distinct pair is possible
            if mp[i] > 1:
                cnt += 1
    # Difference is not equal to zero
    else:
        for i in mp:
            # Frequency of element + k
            # is not zero then distinct
            #pair is possible
            if i + K in mp:
                cnt += 1
 
    return cnt
 
# Driver Code
arr = [8, 12, 16, 4, 0, 20]
K = 4
 
# Function call
ans = TotalPairs(arr, K)
print(ans)
 
# This code is contributed by phasing17


C#




// C# code to implement the above approach.
 
using System;
using System.Collections.Generic;
 
public class GFG {
  public static int TotalPairs(int[] nums, int K)
  {
    // Initializing a map
    Dictionary<int, int> mp
      = new Dictionary<int, int>();
 
    int cnt = 0;
 
    for (int i = 0; i < nums.Length; i++) {
      if (mp.ContainsKey(nums[i]))
        mp[nums[i]] += 1;
      else
        mp[nums[i]] = 1;
    }
 
    // Difference equal to zero
    if (K == 0) {
      foreach(KeyValuePair<int, int> it in mp)
      {
 
        // Frequency of element is
        // greater than one then
        // distinct pair is possible
        if (it.Value > 1)
          cnt++;
      }
    }
 
    // Difference is not equal to zero
    else {
      foreach(KeyValuePair<int, int> it in mp)
      {
 
        // Frequency of element + k
        // is not zero then distinct
        // pair is possible
        if (mp.ContainsKey(it.Key + K)) {
          cnt++;
        }
      }
    }
    return cnt;
  }
 
  public static void Main(string[] args)
  {
    int[] arr = { 8, 12, 16, 4, 0, 20 };
    int K = 4;
 
    // Function call
    int ans = TotalPairs(arr, K);
    Console.Write(ans);
  }
}
 
// This code is contributed by phasing17


Javascript




<script>// JavaScript program for the above approach
 
// function to find total pairs
function TotalPairs(nums, K)
{
    // Initializing a map or dictionary
    var mp = {};
    var cnt = 0;
    for (var i = 0; i < nums.length; i++) {
        if (mp.hasOwnProperty(nums[i]))
            mp[nums[i]] += 1;
        else
            mp[nums[i]] = 1;
    }
 
    // Difference equal to zero
    if (K == 0) {
        for (const i of Object.keys(mp)) {
            // Frequency of element is
            // greater than one then
            // distinct pair is possible
            console.log(i, mp[i], cnt);
            if (mp[i] > 1)
                cnt += 1;
        }
    }
 
    // Difference is not equal to zero
    else {
        for (const i of Object.keys(mp)) {
            // Frequency of element + k
            // is not zero then distinct
            // pair is possible\
            if (mp.hasOwnProperty(parseInt(i) + K))
            {
                cnt += 1;
            }
        }
    }
    return cnt;
}
// Driver Code
var arr = [ 8, 12, 16, 4, 0, 20 ];
var K = 4;
 
// Function call
// var ans = TotalPairs(arr, K);
document.write(TotalPairs(arr, K));
 
// This code is contributed by phasing17
</script>


Output

5

Time Complexity: O(N) [In average case, because the average case time complexity of unordered map is O(1)]
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!