Correct BST whose two nodes are swapped (using Morris Traversal)
Given a Binary Search Tree with two of the nodes of the Binary Search Tree (BST) swapped. The task is to fix (or correct) the BST.
Note: The BST will not have duplicates.
Examples:
Input Tree: 10 / \ 5 8 / \ 2 20 In the above tree, nodes 20 and 8 must be swapped to fix the tree. Following is the output tree 10 / \ 5 20 / \ 2 8
Approach:
- Traverse the BST in In-order fashion and store the nodes in a vector.
- Then this vector is sorted after creating a copy of it.
- Use Insertion sort as it works the best and fastest when the array is almost sorted. As in this problem, only two elements will be displaced so Insertion sort here will work in linear time.
- After sorting, compare the sorted vector and the copy of the vector created earlier, by this, find out the error-some nodes and fix them by finding them in the tree and exchanging them.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // A binary tree node has data, pointer // to left child and a pointer to right child struct node { int data; struct node *left, *right; node( int x) { data = x; left = right = NULL; } }; // Utility function for insertion sort void insertionSort(vector< int >& v, int n) { int i, key, j; for (i = 1; i < n; i++) { key = v[i]; j = i - 1; while (j >= 0 && v[j] > key) { v[j + 1] = v[j]; j = j - 1; } v[j + 1] = key; } } // Utility function to create a vector // with inorder traversal of a binary tree void inorder(node* root, vector< int >& v) { // Base cases if (!root) return ; // Recursive call for left subtree inorder(root->left, v); // Insert node into vector v.push_back(root->data); // Recursive call for right subtree inorder(root->right, v); } // Function to exchange data // for incorrect nodes void find(node* root, int res, int res2) { // Base cases if (!root) { return ; } // Recursive call to find // the node in left subtree find(root->left, res, res2); // Check if current node // is incorrect and exchange if (root->data == res) { root->data = res2; } else if (root->data == res2) { root->data = res; } // Recursive call to find // the node in right subtree find(root->right, res, res2); } // Primary function to fix the two nodes struct node* correctBST( struct node* root) { // Vector to store the // inorder traversal of tree vector< int > v; // Function call to insert // nodes into vector inorder(root, v); // create a copy of the vector vector< int > v1 = v; // Sort the original vector thereby // making it a valid BST's inorder insertionSort(v, v.size()); // Traverse through both vectors and // compare misplaced values in original BST for ( int i = 0; i < v.size(); i++) { // Find the mismatched values // and interchange them if (v[i] != v1[i]) { // Find and exchange the // data of the two nodes find(root, v1[i], v[i]); // As it given only two values are // wrong we don't need to check further break ; } } // Return the root of corrected BST return root; } // A utility function to // print Inorder traversal void printInorder( struct node* node) { if (node == NULL) return ; printInorder(node->left); printf ( "%d " , node->data); printInorder(node->right); } int main() { struct node* root = new node(6); root->left = new node(10); root->right = new node(2); root->left->left = new node(1); root->left->right = new node(3); root->right->right = new node(12); root->right->left = new node(7); printf ( "Inorder Traversal of the" ); printf ( "original tree \n" ); printInorder(root); correctBST(root); printf ( "\nInorder Traversal of the" ); printf ( "fixed tree \n" ); printInorder(root); return 0; } |
Java
// Java implementation of the above approach import java.util.ArrayList; class GFG { // A binary tree node has data, pointer // to left child and a pointer to right child static class node { int data; node left, right; public node( int x) { data = x; left = right = null ; } }; // Utility function for insertion sort static void insertionSort(ArrayList<Integer> v, int n) { int i, key, j; for (i = 1 ; i < n; i++) { key = v.get(i); j = i - 1 ; while (j >= 0 && v.get(j) > key) { v.set(j + 1 , v.get(i)); j = j - 1 ; } v.set(j + 1 , key); } } // Utility function to create a vector // with inorder traversal of a binary tree static void inorder(node root, ArrayList<Integer> v) { // Base cases if (root == null ) return ; // Recursive call for left subtree inorder(root.left, v); // Insert node into vector v.add(root.data); // Recursive call for right subtree inorder(root.right, v); } // Function to exchange data // for incorrect nodes static void find(node root, int res, int res2) { // Base cases if (root == null ) { return ; } // Recursive call to find // the node in left subtree find(root.left, res, res2); // Check if current node // is incorrect and exchange if (root.data == res) { root.data = res2; } else if (root.data == res2) { root.data = res; } // Recursive call to find // the node in right subtree find(root.right, res, res2); } // Primary function to fix the two nodes static node correctBST(node root) { // Vector to store the // inorder traversal of tree ArrayList<Integer> v = new ArrayList<>(); // Function call to insert // nodes into vector inorder(root, v); // create a copy of the vector ArrayList<Integer> v1 = new ArrayList<>(v); // Sort the original vector thereby // making it a valid BST's inorder insertionSort(v, v.size()); // Traverse through both vectors and // compare misplaced values in original BST for ( int i = 0 ; i < v.size(); i++) { // Find the mismatched values // and interchange them if (v.get(i) != v1.get(i)) { // Find and exchange the // data of the two nodes find(root, v1.get(i), v.get(i)); // As it given only two values are // wrong we don't need to check further break ; } } // Return the root of corrected BST return root; } // A utility function to // print Inorder traversal static void printInorder(node node) { if (node == null ) return ; printInorder(node.left); System.out.printf( "%d " , node.data); printInorder(node.right); } // Driver code public static void main(String[] args) { node root = new node( 6 ); root.left = new node( 10 ); root.right = new node( 2 ); root.left.left = new node( 1 ); root.left.right = new node( 3 ); root.right.right = new node( 12 ); root.right.left = new node( 7 ); System.out.printf( "Inorder Traversal of the" ); System.out.printf( "original tree \n" ); printInorder(root); correctBST(root); System.out.printf( "\nInorder Traversal of the" ); System.out.printf( "fixed tree \n" ); printInorder(root); } } // This code is contributed by sanjeev2552 |
Python3
# Python3 implementation of the above approach # A binary tree node has data, pointer # to left child and a pointer to right child class node: def __init__( self , x): self .data = x self .left = self .right = None # Utility function for insertion sort def insertionSort(v, n): for i in range (n): key = v[i] j = i - 1 while (j > = 0 and v[j] > key): v[j + 1 ] = v[j] j = j - 1 v[j + 1 ] = key # Utility function to create a list # with inorder traversal of a binary tree def inorder(root, v): # Base cases if ( not root): return # Recursive call for left subtree inorder(root.left, v) # Insert node into list v.append(root.data) # Recursive call for right subtree inorder(root.right, v) # Function to exchange data # for incorrect nodes def find(root, res, res2): # Base cases if not root: return # Recursive call to find # the node in left subtree find(root.left, res, res2) # Check if current node # is incorrect and exchange if (root.data = = res): root.data = res2 elif (root.data = = res2): root.data = res # Recursive call to find # the node in right subtree find(root.right, res, res2) # Primary function to fix the two nodes def correctBST(root): # List to store the # inorder traversal of tree v = [] # Function call to insert # nodes into list inorder(root, v) # create a copy of the list v1 = v.copy() # Sort the original list thereby # making it a valid BST's inorder insertionSort(v, len (v)) # Traverse through both list and # compare misplaced values in original BST for i in range ( len (v)): # Find the mismatched values # and interchange them if (v[i] ! = v1[i]): # Find and exchange the # data of the two nodes find(root, v1[i], v[i]) # As it given only two values are # wrong we don't need to check further break # Return the root of corrected BST return root # A utility function to # print Inorder traversal def printInorder(node): if (node = = None ): return printInorder(node.left) print ( "{} " . format (node.data), end = ' ' ) printInorder(node.right) if __name__ = = '__main__' : root = node( 6 ) root.left = node( 10 ) root.right = node( 2 ) root.left.left = node( 1 ) root.left.right = node( 3 ) root.right.right = node( 12 ) root.right.left = node( 7 ) print ( "Inorder Traversal of the original tree " ) printInorder(root) correctBST(root) print () print ( "Inorder Traversal of the fixed tree " ) printInorder(root) print () # This code is contributed by # Amartya Ghosh |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; public class GFG { // A binary tree node has data, pointer // to left child and a pointer to right child public class node { public int data; public node left, right; public node( int x) { data = x; left = right = null ; } }; // Utility function for insertion sort static void insertionSort(List< int > v, int n) { int i, key, j; for (i = 1; i < n; i++) { key = v[i]; j = i - 1; while (j >= 0 && v[j] > key) { v[j + 1]= v[i]; j = j - 1; } v[j + 1] = key; } } // Utility function to create a vector // with inorder traversal of a binary tree static void inorder(node root, List< int > v) { // Base cases if (root == null ) return ; // Recursive call for left subtree inorder(root.left, v); // Insert node into vector v.Add(root.data); // Recursive call for right subtree inorder(root.right, v); } // Function to exchange data // for incorrect nodes static void find(node root, int res, int res2) { // Base cases if (root == null ) { return ; } // Recursive call to find // the node in left subtree find(root.left, res, res2); // Check if current node // is incorrect and exchange if (root.data == res) { root.data = res2; } else if (root.data == res2) { root.data = res; } // Recursive call to find // the node in right subtree find(root.right, res, res2); } // Primary function to fix the two nodes static node correctBST(node root) { // List to store the // inorder traversal of tree List< int > v = new List< int >(); // Function call to insert // nodes into vector inorder(root, v); // create a copy of the vector List< int > v1 = new List< int >(v); // Sort the original vector thereby // making it a valid BST's inorder insertionSort(v, v.Count); // Traverse through both vectors and // compare misplaced values in original BST for ( int i = 0; i < v.Count; i++) { // Find the mismatched values // and interchange them if (v[i] != v1[i]) { // Find and exchange the // data of the two nodes find(root, v1[i], v[i]); // As it given only two values are // wrong we don't need to check further break ; } } // Return the root of corrected BST return root; } // A utility function to // print Inorder traversal static void printInorder(node node) { if (node == null ) return ; printInorder(node.left); Console.Write( "{0} " , node.data); printInorder(node.right); } // Driver code public static void Main(String[] args) { node root = new node(6); root.left = new node(10); root.right = new node(2); root.left.left = new node(1); root.left.right = new node(3); root.right.right = new node(12); root.right.left = new node(7); Console.Write( "Inorder Traversal of the" ); Console.Write( "original tree \n" ); printInorder(root); correctBST(root); Console.Write( "\nInorder Traversal of the" ); Console.Write( "fixed tree \n" ); printInorder(root); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript implementation of the above approach // A binary tree node has data, pointer // to left child and a pointer to right child class node { constructor(x) { this .data = x; this .left = this .right = null ; } } // Utility function for insertion sort function insertionSort(v,n) { let i, key, j; for (i = 1; i < n; i++) { key = v[i]; j = i - 1; while (j >= 0 && v[j] > key) { v[j + 1] = v[j]; j = j - 1; } v[j + 1] = key; } } // Utility function to create a vector // with inorder traversal of a binary tree function inorder(root, v) { // Base cases if (!root) return ; // Recursive call for left subtree inorder(root.left, v); // Insert node into vector v.push(root.data); // Recursive call for right subtree inorder(root.right, v); } // Function to exchange data // for incorrect nodes function find(root,res,res2) { // Base cases if (!root) { return ; } // Recursive call to find // the node in left subtree find(root.left, res, res2); // Check if current node // is incorrect and exchange if (root.data == res) { root.data = res2; } else if (root.data == res2) { root.data = res; } // Recursive call to find // the node in right subtree find(root.right, res, res2); } // Primary function to fix the two nodes function correctBST(root) { // Vector to store the // inorder traversal of tree let v = []; // Function call to insert // nodes into vector inorder(root, v); // create a copy of the vector let v1 = v.slice(); // Sort the original vector thereby // making it a valid BST's inorder insertionSort(v, v.length); // Traverse through both vectors and // compare misplaced values in original BST for (let i = 0; i < v.length; i++) { // Find the mismatched values // and interchange them if (v[i] != v1[i]) { // Find and exchange the // data of the two nodes find(root, v1[i], v[i]); // As it given only two values are // wrong we don't need to check further break ; } } // Return the root of corrected BST return root; } // A utility function to // print Inorder traversal function printInorder(node) { if (node == null ) return ; printInorder(node.left); document.write(node.data, " " ); printInorder(node.right); } // driver code let root = new node(6); root.left = new node(10); root.right = new node(2); root.left.left = new node(1); root.left.right = new node(3); root.right.right = new node(12); root.right.left = new node(7); document.write( "Inorder Traversal of the original tree" , "</br>" ); printInorder(root); correctBST(root); document.write( "</br>" , "Inorder Traversal of the fixed tree " , "</br>" ); printInorder(root); // This code is contributed by shinjanpatra </script> |
Inorder Traversal of theoriginal tree 1 10 3 6 7 2 12 Inorder Traversal of thefixed tree 1 2 3 6 7 10 12
Time Complexity: O(N)
Auxiliary Space: O(N), where N is the number of nodes in the Binary Tree.
Method 2:
To understand this, you need to first understand Morris Traversal or Morris Threading Traversal. It makes use of leaf nodes’ right/left pointer to achieve O(1) space Traversal on a Binary Tree.
So, in this approach, we can solve this in O(n) time and O(1) space i.e constant space, with a single traversal of the given BST. Since the inorder traversal of BST is always a sorted array, the problem can be reduced to a problem where two elements of a sorted array are swapped.
Below is the implementation of the above approach:
C++
// C++ implementation of the // above approach #include <bits/stdc++.h> using namespace std ; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct node { int data; struct node *left, *right; }; // A utility function to swap two integers void swap( int * a, int * b ) { int t = *a; *a = *b; *b = t; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct node* newNode( int data) { struct node* Node = new node(); Node->data = data; Node->left = NULL; Node->right = NULL; return (Node); } // Function for inorder traversal using // Morris Traversal void MorrisTraversal( struct node* root, struct node* &first, struct node* &last, struct node* &prev ) { // Current node struct node* curr = root; while (curr != NULL) { if (curr->left==NULL) { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == NULL && prev != NULL && prev->data > curr->data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != NULL && prev->data > curr->data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; curr = curr->right; } else { /* Find the inorder predecessor of current */ struct node* pre = curr->left; while (pre->right!=NULL && pre->right!=curr) { pre = pre->right; } /* Make current as right child of its inorder predecessor */ if (pre->right==NULL) { pre->right = curr; curr = curr->left; } else { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == NULL && prev!=NULL && prev->data > curr->data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != NULL && prev->data > curr->data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; /* Revert the changes made in the 'if' part to restore the original tree i.e., fix the right child of predecessor*/ pre->right = NULL; curr = curr->right; } } } } // A function to fix a given BST // where two nodes are swapped. This // function uses correctBSTUtil() // to find out two nodes and swaps the // nodes to fix the BST void correctBST( struct node* root ) { // Initialize pointers needed // for correctBSTUtil() struct node* first =NULL ; struct node* last = NULL ; struct node* prev =NULL ; // Set the pointers to find out two nodes MorrisTraversal( root ,first ,last , prev); // Fix (or correct) the tree swap( &(first->data), &(last->data) ); // else nodes have not been swapped, // passed tree is really BST. } /* A utility function to print Inorder traversal */ void printInorder( struct node* node) { if (node == NULL) return ; printInorder(node->left); printf ( "%d " , node->data); printInorder(node->right); } /* Driver Code */ int main() { /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ struct node *root = newNode(6); root->left = newNode(10); root->right = newNode(2); root->left->left = newNode(1); root->left->right = newNode(3); root->right->right = newNode(12); root->right->left = newNode(7); printf ( "Inorder Traversal of the original tree \n" ); printInorder(root); correctBST(root); printf ( "\nInorder Traversal of the fixed tree \n" ); printInorder(root); return 0; } // This code is contributed by // Sagara Jangra and Naresh Saharan |
Java
// Java program to correct the BST // if two nodes are swapped import java.util.*; import java.lang.*; import java.io.*; class Node { int data; Node left, right; Node( int d) { data = d; left = right = null ; } } class BinaryTree { Node first, last, prev; // This function does inorder traversal // Using Morris Traversal to find out the two // swapped nodes. void MorrisTraversal( Node root) { // current node Node curr = root; Node pre = null ; while (curr != null ) { if (curr.left== null ) { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == null && prev != null && prev.data > curr.data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != null && prev.data > curr.data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; curr = curr.right; } else { /* Find the inorder predecessor of current */ pre = curr.left; while (pre.right!= null && pre.right!=curr) { pre = pre.right; } // Make current as right child of // its inorder predecessor */ if (pre.right== null ) { pre.right = curr; curr = curr.left; } else { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == null && prev!= null && prev.data > curr.data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != null && prev.data > curr.data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; /* Revert the changes made in the 'if' part to restore the original tree i.e., fix the right child of predecessor*/ pre.right = null ; curr = curr.right; } } } } // A function to fix a given BST where // two nodes are swapped. This function // uses correctBSTUtil() to find out // two nodes and swaps the nodes to // fix the BST void correctBST( Node root ) { // Initialize pointers needed // for correctBSTUtil() first = last = prev = null ; // Set the pointers to find out // two nodes MorrisTraversal( root ); // Fix (or correct) the tree int temp = first.data; first.data = last.data; last.data = temp; } /* A utility function to print Inorder traversal */ void printInorder(Node node) { if (node == null ) return ; printInorder(node.left); System.out.print( " " + node.data); printInorder(node.right); } // Driver Code public static void main (String[] args) { /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ Node root = new Node( 6 ); root.left = new Node( 10 ); root.right = new Node( 2 ); root.left.left = new Node( 1 ); root.left.right = new Node( 3 ); root.right.right = new Node( 12 ); root.right.left = new Node( 7 ); System.out.println( "Inorder Traversal" + " of the original tree" ); BinaryTree tree = new BinaryTree(); tree.printInorder(root); tree.correctBST(root); System.out.println( "\nInorder Traversal" + " of the fixed tree" ); tree.printInorder(root); } } // This code is contributed by // Naresh Saharan and Sagara Jangra |
Python3
# Python 3 implementation of the # above approach # A binary tree node has data, # pointer to left child # and a pointer to right child class node: def __init__( self , d): self .data = d self .left = self .right = None # Function for inorder traversal using # Morris Traversal def MorrisTraversal(root, first, last, prev): # Current node curr = root while (curr ! = None ): if (curr.left = = None ): # If this node is smaller than # the previous node, it's # violating the BST rule. if (first = = None and prev is not None and prev.data > curr.data): # If this is first violation, # mark these two nodes as # 'first' and 'last' first = prev last = curr if (first ! = None and prev.data > curr.data): # If this is second violation, # mark this node as last last = curr prev = curr curr = curr.right else : # Find the inorder predecessor of current pre = curr.left while (pre.right ! = None and pre.right ! = curr): pre = pre.right # Make current as right child of # its inorder predecessor if (pre.right = = None ): pre.right = curr curr = curr.left else : # If this node is smaller than # the previous node, it's # violating the BST rule. if (first = = None and prev ! = None and prev.data > curr.data): # If this is first violation # mark these two nodes as # 'first' and 'last' first = prev last = curr if (first ! = None and prev.data > curr.data): # If this is second violation, # mark this node as last last = curr prev = curr # Revert the changes made in the # 'if' part to restore the # original tree i.e., fix the # right child of predecessor pre.right = None curr = curr.right return first,last # A function to fix a given BST # where two nodes are swapped. This # function uses correctBSTUtil() # to find out two nodes and swaps the # nodes to fix the BST def correctBST(root): # Initialize pointers needed # for correctBSTUtil() first = last = prev = None # Set the pointers to find out two nodes first,last = MorrisTraversal(root, first, last, prev) # Fix (or correct) the tree first.data, last.data = last.data, first.data # else nodes have not been swapped, # passed tree is really BST. # A utility function to print Inorder traversal def printInorder(node): if (node = = None ): return printInorder(node.left) print ( "{} " . format (node.data),end = ' ' ) printInorder(node.right) # Driver Code if __name__ = = '__main__' : # 6 # / \ # 10 2 # / \ / \ # 1 3 7 12 # 10 and 2 are swapped root = node( 6 ) root.left = node( 10 ) root.right = node( 2 ) root.left.left = node( 1 ) root.left.right = node( 3 ) root.right.right = node( 12 ) root.right.left = node( 7 ) print ( "Inorder Traversal of the original tree " ) printInorder(root) correctBST(root) print () print ( "Inorder Traversal of the fixed tree " ) printInorder(root) # This code is contributed by # Amartya Ghosh |
C#
// C# program to correct the BST // if two nodes are swapped using System; public class Node { public int data; public Node left, right; public Node( int d) { data = d; left = right = null ; } } public class GFG { Node first, last, prev; // This function does inorder traversal // Using Morris Traversal to find out the two // swapped nodes. void MorrisTraversal( Node root) { // current node Node curr = root; Node pre = null ; while (curr != null ) { if (curr.left== null ) { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == null && prev != null && prev.data > curr.data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != null && prev.data > curr.data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; curr = curr.right; } else { /* Find the inorder predecessor of current */ pre = curr.left; while (pre.right!= null && pre.right!=curr) { pre = pre.right; } // Make current as right child of // its inorder predecessor */ if (pre.right== null ) { pre.right = curr; curr = curr.left; } else { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == null && prev!= null && prev.data > curr.data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != null && prev.data > curr.data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; /* Revert the changes made in the 'if' part to restore the original tree i.e., fix the right child of predecessor*/ pre.right = null ; curr = curr.right; } } } } // A function to fix a given BST where // two nodes are swapped. This function // uses correctBSTUtil() to find out // two nodes and swaps the nodes to // fix the BST void correctBST( Node root ) { // Initialize pointers needed // for correctBSTUtil() first = last = prev = null ; // Set the pointers to find out // two nodes MorrisTraversal( root ); // Fix (or correct) the tree int temp = first.data; first.data = last.data; last.data = temp; } /* A utility function to print Inorder traversal */ void printInorder(Node node) { if (node == null ) return ; printInorder(node.left); Console.Write( " " + node.data); printInorder(node.right); } // Driver Code public static void Main(String[] args) { /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ Node root = new Node(6); root.left = new Node(10); root.right = new Node(2); root.left.left = new Node(1); root.left.right = new Node(3); root.right.right = new Node(12); root.right.left = new Node(7); Console.WriteLine( "Inorder Traversal" + " of the original tree" ); GFG tree = new GFG(); tree.printInorder(root); tree.correctBST(root); Console.WriteLine( "\nInorder Traversal" + " of the fixed tree" ); tree.printInorder(root); } } // This code contributed by gauravrajput1 |
Javascript
<script> // javascript program to correct the BST // if two nodes are swapped class Node { constructor(val) { this .data = val; this .left = null ; this .right = null ; } } var first, last, prev; // This function does inorder traversal // Using Morris Traversal to find out the two // swapped nodes. function MorrisTraversal(root) { // current node var curr = root; var pre = null ; while (curr != null ) { if (curr.left == null ) { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == null && prev != null && prev.data > curr.data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != null && prev.data > curr.data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; curr = curr.right; } else { /* Find the inorder predecessor of current */ pre = curr.left; while (pre.right != null && pre.right != curr) { pre = pre.right; } // Make current as right child of // its inorder predecessor */ if (pre.right == null ) { pre.right = curr; curr = curr.left; } else { // If this node is smaller than // the previous node, it's // violating the BST rule. if (first == null && prev != null && prev.data > curr.data) { // If this is first violation, // mark these two nodes as // 'first' and 'last' first = prev; last = curr; } if (first != null && prev.data > curr.data) { // If this is second violation, // mark this node as last last = curr; } prev = curr; /* * Revert the changes made in the 'if' part to restore the original tree i.e., * fix the right child of predecessor */ pre.right = null ; curr = curr.right; } } } } // A function to fix a given BST where // two nodes are swapped. This function // uses correctBSTUtil() to find out // two nodes and swaps the nodes to // fix the BST function correctBST(root) { // Initialize pointers needed // for correctBSTUtil() first = last = prev = null ; // Set the pointers to find out // two nodes MorrisTraversal(root); // Fix (or correct) the tree var temp = first.data; first.data = last.data; last.data = temp; } /* * A utility function to print Inorder traversal */ function printInorder(node) { if (node == null ) return ; printInorder(node.left); document.write( " " + node.data); printInorder(node.right); } // Driver Code /* 6 / \ 10 2 / \ / \ 1 3 7 12 10 and 2 are swapped */ var root = new Node(6); root.left = new Node(10); root.right = new Node(2); root.left.left = new Node(1); root.left.right = new Node(3); root.right.right = new Node(12); root.right.left = new Node(7); document.write( "Inorder Traversal" + " of the original tree<br/>" ); printInorder(root); correctBST(root); document.write( "<br/>Inorder Traversal" + " of the fixed tree<br/>" ); printInorder(root); // This code is contributed by Rajput-Ji </script> |
Inorder Traversal of the original tree 1 10 3 6 7 2 12 Inorder Traversal of the fixed tree 1 2 3 6 7 10 12
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...