Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Corollaries of Binomial Theorem

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

The expression (a+b)^n denotes (a+b)(a+b)(a+b) ... n times. This can be evaluated as the sum of the terms involving a^k b^{n-k} for k = 0 to n, where the first term can be chosen from n places, second term from (n-1) places, k^{th} term from (n-(k-1)) places and so on. This is expressed as (a+b)^n = \sum\limits_{k=0}^n ^nC_k a^{n-k} b^k . The binomial expansion using Combinatorial symbols is

(a+b)^n = ^nC_0 a^n b^0 + ^nC_1 a^{n-1} b^1 + ^nC_2 a^{n-2} b^2 .. + ^nC_{n-k} a^k b^{n-k} .. +^nC_n a^0 b^n

  • The degree of each term a^k [Tex]b^{n-k} [/Tex]in the above binomial expansion is of the order n.
  • The number of terms in the expansion is n+1.
  • ^nC_k = n!/k!(n-k)! Similarly ^nC_{n-k} = n!/(n-k)!(n-(n-k))! = n!/(n-k)!k! Hence it can be concluded that ^nC_k = ^nC_{n-k} .

Substituting a = 1 and b = x in the binomial expansion, for any positive integer n we obtain (1+x)^n = ^nC_0 + ^nC_1 x^1 + ^nC_2 x^2 ..+ ^nC_n x^n . Corollary 1:

\sum\limits_{k=0}^n ^nC_k = 2^n

for any non-negative integer n. Replacing x with 1 in the above binomial expansion, We obtain ^nC_0 + ^nC_1 + ^nC_2 .. + ^nC_n = (1+1)^n = 2^n . Corollary 2:

\sum\limits_{k=0}^n ^nC_k = 0

for any positive integer n. Replacing x with -1 in the above binomial expansion, We obtain ^nC_0 + ^nC_1 (-1) + ^nC_2 (-1)^2 .. + ^nC_n (-1)^n = (1+(-1))^n = 0 . Corollary 3: Replacing x with 2 in the above binomial expansion, we obtain ^nC_0 + ^nC_1 2 + ^nC_2 2^2 .. + ^nC_n 2^n = (1+2)^n = 3^n In general, it can be said that

\sum\limits_{k=0}^n (2^k) ^nC_k = 3^n

Additionally, one can combine corollary 1 and corollary 2 to get another result, ^nC_0 + ^nC_1 (-1) + ^nC_2 (-1)^2 .. + ^nC_n (-1)^n = (1+(-1))^n = 0 [Tex]^nC_0 + ^nC_2 + .. = ^nC_1 + ^nC_3 + … [/Tex]Sum of coefficients of even terms = Sum of coefficients of odd terms. Since \sum\limits_{k=0}^n ^nC_k = 2^n , 2(^nC_0 + ^nC_2 + ..) = 2^n [Tex]^nC_0 + ^nC_2 + .. = 2^{n-1} [/Tex]

^nC_0 + ^nC_2 + .. = ^nC_1 + ^nC_3 + .. = 2^{n-1}

Counting The coefficients of the terms in the expansion (a+b)^n correspond to the terms of the pascal’s triangle in row n.

(a+b)^0 1 1
(a+b)^1 a+b 1 \ 1
(a+b)^2 a^2+2ab+b^2 1 \ 2 \ 1
(a+b)^3 a^3+3a^2b+3ab^2+b^3 1 \ 3 \ 3 \ 1

My Personal Notes arrow_drop_up
Last Updated : 28 Jun, 2022
Like Article
Save Article
Similar Reads
Related Tutorials