Skip to content
Related Articles
Get the best out of our app
GFG App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Convert an Array to reduced form using Vector of pairs

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array with n distinct elements, convert the given array to a form where all elements are in range from 0 to n-1. The order of elements is same, i.e., 0 is placed in place of smallest element, 1 is placed for second smallest element, … n-1 is placed for largest element.

Input:  arr[] = {10, 40, 20}
Output: arr[] = {0, 2, 1}

Input:  arr[] = {5, 10, 40, 30, 20}
Output: arr[] = {0, 1, 4, 3, 2}

We have discussed simple and hashing based solutions. In this post, a new solution is discussed. The idea is to create a vector of pairs. Every element of pair contains element and index. We sort vector by array values. After sorting, we copy indexes to original array. 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Converts arr[0..n-1] to reduced form.
void convert(int arr[], int n)
{
    // A vector of pairs. Every element of
    // pair contains array element and its
    // index
    vector<pair<int, int> > v;
 
    // Put all elements and their index in
    // the vector
    for (int i = 0; i < n; i++)
        v.push_back(make_pair(arr[i], i));
 
    // Sort the vector by array values
    sort(v.begin(), v.end());
 
    // Put indexes of modified vector in arr[]
    for (int i = 0; i < n; i++)
        arr[v[i].second] = i;
}
 
// Utility function to print an array.
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver program to test above method
int main()
{
    int arr[] = { 10, 20, 15, 12, 11, 50 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << "Given Array is \n";
    printArr(arr, n);
 
    convert(arr, n);
 
    cout << "\n\nConverted Array is \n";
    printArr(arr, n);
 
    return 0;
}


Java




// Java equivalent of the code
import java.util.*;
 
public class Main {
     
    // Converts arr[0..n-1] to reduced form.
    static void convert(int arr[], int n)
    {
        // A vector of pairs. Every element of
        // pair contains array element and its
        // index
        List<Pair> v = new ArrayList<>();
 
        // Put all elements and their index in
        // the vector
        for (int i = 0; i < n; i++)
            v.add(new Pair(arr[i], i));
 
        // Sort the vector by array values
        Collections.sort(v, new SortByVal());
 
        // Put indexes of modified vector in arr[]
        for (int i = 0; i < n; i++)
            arr[v.get(i).getIndex()] = i;
    }
 
    // Utility function to print an array.
    static void printArr(int arr[], int n)
    {
        for (int i = 0; i < n; i++)
            System.out.print(arr[i] + " ");
    }
 
    // Driver program to test above method
    public static void main (String[] args)
    {
        int arr[] = { 10, 20, 15, 12, 11, 50 };
        int n = arr.length;
 
        System.out.println("Given Array is \n");
        printArr(arr, n);
 
        convert(arr, n);
 
        System.out.println("\n\nConverted Array is \n");
        printArr(arr, n);
    }
 
    // class to store array elements and its
    // index.
    static class Pair {
   
        int val;
        int index;
   
        public Pair(int val, int index)
        {
            this.val = val;
            this.index = index;
        }
   
        public int getVal()
        {
            return val;
        }
   
        public int getIndex()
        {
            return index;
        }
    }
   
    // Comparator to sort the vector elements
    // according to their values
    static class SortByVal implements Comparator<Pair> {
   
        public int compare(Pair a, Pair b)
        {
            return a.getVal() - b.getVal();
        }
    }
}


Python3




# Converts arr[0..n-1] to reduced form.
def convert(arr, n):
     
    # A list of tuples. Every element of
    # tuple contains array element and its
    # index
    v = []
 
    # Put all elements and their index in
    # the list
    for i in range(n):
        v.append((arr[i], i))
 
    # Sort the list by array values
    v.sort()
 
    # Put indexes of modified list in arr[]
    for i in range(n):
        arr[v[i][1]] = i
 
# Utility function to print an array.
def printArr(arr, n):
    for i in range(n):
        print(arr[i], end=" ")
 
# Driver program to test above method
arr = [10, 20, 15, 12, 11, 50]
n = len(arr)
 
print("Given Array is ")
printArr(arr, n)
 
convert(arr, n)
 
print("\n\nConverted Array is ")
printArr(arr, n)
 
# This code is contributed by Prasad Kandekar(prasad264)


C#




using System;
using System.Collections.Generic;
 
public class Program {
    // Converts arr[0..n-1] to reduced form.
    static void Convert(int[] arr, int n)
    {
        // A list of pairs. Every element of pair contains
        // array element and its index
        List<Pair> v = new List<Pair>();
 
        // Put all elements and their index in the list
        for (int i = 0; i < n; i++)
            v.Add(new Pair(arr[i], i));
 
        // Sort the list by array values
        v.Sort(new SortByVal());
 
        // Put indexes of modified list in arr[]
        for (int i = 0; i < n; i++)
            arr[v[i].GetIndex()] = i;
    }
 
    // Utility function to print an array.
    static void PrintArr(int[] arr, int n)
    {
        for (int i = 0; i < n; i++)
            Console.Write(arr[i] + " ");
    }
 
    // Driver program to test above method
    public static void Main()
    {
        int[] arr = { 10, 20, 15, 12, 11, 50 };
        int n = arr.Length;
 
        Console.WriteLine("Given Array is ");
        PrintArr(arr, n);
 
        Convert(arr, n);
 
        Console.WriteLine("\n\nConverted Array is");
        PrintArr(arr, n);
    }
 
    // class to store array elements and its index.
    class Pair {
        int val;
        int index;
 
        public Pair(int val, int index)
        {
            this.val = val;
            this.index = index;
        }
 
        public int GetVal() { return val; }
 
        public int GetIndex() { return index; }
    }
 
    // Comparator to sort the list elements
    // according to their values
    class SortByVal : IComparer<Pair> {
        public int Compare(Pair a, Pair b)
        {
            return a.GetVal() - b.GetVal();
        }
    }
}


Javascript




// Converts arr[0..n-1] to reduced form.
function convert(arr, n) {
     
    // An array of pairs. Every element of
    // pair contains array element and its
    // index
    let v = [];
 
    // Put all elements and their index in
    // the array
    for (let i = 0; i < n; i++)
        v.push([arr[i], i]);
 
    // Sort the array by array values
    v.sort((a, b) => a[0] - b[0]);
 
    // Put indexes of modified array in arr[]
    for (let i = 0; i < n; i++)
        arr[v[i][1]] = i;
}
 
// Utility function to print an array.
function printArr(arr, n) {
    for (let i = 0; i < n; i++)
        console.log(arr[i] + " ");
}
 
// Driver program to test above method
let arr = [10, 20, 15, 12, 11, 50];
let n = arr.length;
 
console.log("Given Array is ");
printArr(arr, n);
 
convert(arr, n);
 
console.log("\n\nConverted Array is ");
printArr(arr, n);
 
// This code is contributed by prasad264


Output

Given Array is 
10 20 15 12 11 50 

Converted Array is 
0 4 3 2 1 5 

Time Complexity : O(n Log n) 
Auxiliary Space : O(n) 

Another Approach:

1) Create a copy of the input array and sort it in non-decreasing order.
2) Create a map where each element of the sorted array is mapped to its corresponding index in the range 0 to n-1.
3) Traverse the input array and for each element, replace it with the value obtained from the map.

C++




#include <bits/stdc++.h>
using namespace std;
 
// Converts arr[0..n-1] to reduced form.
void convert(int arr[], int n)
{
    // Make a copy of the input array
    int sorted_arr[n];
    copy(arr, arr+n, sorted_arr);
 
    // Sort the copy in non-decreasing order
    sort(sorted_arr, sorted_arr+n);
 
    // Map each element of the sorted array to its index in the range 0 to n-1
    unordered_map<int, int> mp;
    for (int i = 0; i < n; i++) {
        mp[sorted_arr[i]] = i;
    }
 
    // Replace each element of the input array with its corresponding index
    for (int i = 0; i < n; i++) {
        arr[i] = mp[arr[i]];
    }
}
 
// Utility function to print an array.
void printArr(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver program to test above method
int main()
{
    int arr[] = { 10, 20, 15, 12, 11, 50 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << "Given Array is \n";
    printArr(arr, n);
 
    convert(arr, n);
 
    cout << "\n\nConverted Array is \n";
    printArr(arr, n);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Converts arr[0..n-1] to reduced form.
    public static void convert(int arr[], int n)
    {
        // Make a copy of the input array
        int[] sorted_arr = Arrays.copyOf(arr, n);
 
        // Sort the copy in non-decreasing order
        Arrays.sort(sorted_arr);
 
        // Map each element of the sorted array to its index
        // in the range 0 to n-1
        HashMap<Integer, Integer> mp
            = new HashMap<Integer, Integer>();
        for (int i = 0; i < n; i++) {
            mp.put(sorted_arr[i], i);
        }
 
        // Replace each element of the input array with its
        // corresponding index
        for (int i = 0; i < n; i++) {
            arr[i] = mp.get(arr[i]);
        }
    }
 
    // Utility function to print an array.
    public static void printArr(int arr[], int n)
    {
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
    }
 
    // Driver program to test above method
    public static void main(String[] args)
    {
        int arr[] = { 10, 20, 15, 12, 11, 50 };
        int n = arr.length;
 
        System.out.println("Given Array is ");
        printArr(arr, n);
 
        convert(arr, n);
 
        System.out.println("\n\nConverted Array is ");
        printArr(arr, n);
    }
}
// This code is contributed by Prajwal Kandekar


Python3




def convert(arr, n):
    # Make a copy of the input array
    sorted_arr = arr.copy()
 
    # Sort the copy in non-decreasing order
    sorted_arr.sort()
 
    # Map each element of the sorted array to its index in the range 0 to n-1
    mp = {}
    for i in range(n):
        mp[sorted_arr[i]] = i
 
    # Replace each element of the input array with its corresponding index
    for i in range(n):
        arr[i] = mp[arr[i]]
 
 
def print_arr(arr, n):
    for i in range(n):
        print(arr[i], end=' ')
    print()
 
 
# Driver program to test above method
if __name__ == '__main__':
    arr = [10, 20, 15, 12, 11, 50]
    n = len(arr)
 
    print("Given Array is ")
    print_arr(arr, n)
 
    convert(arr, n)
 
    print("\nConverted Array is ")
    print_arr(arr, n)
# This code is contributed by Prajwal Kandekar


Javascript




function convert(arr, n) {
  // Make a copy of the input array
  let sorted_arr = [...arr];
 
  // Sort the copy in non-decreasing order
  sorted_arr.sort((a, b) => a - b);
 
  // Map each element of the sorted array to its index in the range 0 to n-1
  let mp = {};
  for (let i = 0; i < n; i++) {
    mp[sorted_arr[i]] = i;
  }
 
  // Replace each element of the input array with its corresponding index
  for (let i = 0; i < n; i++) {
    arr[i] = mp[arr[i]];
  }
}
 
function print_arr(arr, n) {
  for (let i = 0; i < n; i++) {
    process.stdout.write(`${arr[i]} `);
  }
  console.log();
}
 
// Driver program to test above method
let arr = [10, 20, 15, 12, 11, 50];
let n = arr.length;
 
process.stdout.write("Given Array is \n");
print_arr(arr, n);
 
convert(arr, n);
 
process.stdout.write("\nConverted Array is \n");
print_arr(arr, n);


Output

Given Array is 
10 20 15 12 11 50 

Converted Array is 
0 4 3 2 1 5 

Time Complexity: O(n log n) where n is the size of the input array. This is because the function creates a copy of the input array using the “copy” function, which takes O(n) time, sorts the copy using the “sort” function, which has a time complexity of O(n log n)

Space Complexity: O(n) we are using extra space as a map.

This article is contributed by Arpit Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above


My Personal Notes arrow_drop_up
Last Updated : 19 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials