# Convert A into B by incrementing or decrementing 1, 2, or 5 any number of times

Given two integers **A** and **B**, the task is to find the minimum number of moves needed to make **A** equal to **B** by incrementing or decrementing the **A** by either **1**, **2**, or **5** any number of times.

**Examples:**

Input:A = 4, B = 0Output:2Explanation:

Perform the operation as follows:

- Decreasing the value of A by 2, modifies the value of A to (4 – 2) = 2.
- Decreasing the value of A by 2 modifies the value of A to (2 – 2) = 0. Which is equal to B.
Therefore, the number of moves required is 2.

Input:A = 3, B = 9Output:2

**Approach: **The given problem can be solved by using the Greedy Approach. The idea is to first find the increment or decrements of **5**, then **2**, and then **1** is needed to convert **A** to **B**. Follow the steps below to solve the problem:

- Update the value of
**A**as the absolute difference between**A**and**B**. - Now, print the value of
**(A/5) + (A%5)/2 + (A%5)%2**as the minimum number of increments or decrements of**1**,**2**, or**5**to convert**A**into**B**.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find minimum number of` `// moves required to convert A into B` `int` `minimumSteps(` `int` `a, ` `int` `b)` `{` ` ` `// Stores the minimum number of` ` ` `// moves required` ` ` `int` `cnt = 0;` ` ` `// Stores the absolute` ` ` `// difference` ` ` `a = ` `abs` `(a - b);` ` ` `// FInd the number of moves` ` ` `cnt = (a / 5) + (a % 5) / 2 + (a % 5) % 2;` ` ` `// Return cnt` ` ` `return` `cnt;` `}` `// Driver Code` `int` `main()` `{` ` ` `// Input` ` ` `int` `A = 3, B = 9;` ` ` `// Function call` ` ` `cout << minimumSteps(A, B);` ` ` `return` `0;` `}` |

## Java

`// Java program for the above approach` `import` `java.io.*;` `class` `GFG ` `{` ` ` ` ` `// Function to find minimum number of` ` ` `// moves required to convert A into B` ` ` `static` `int` `minimumSteps(` `int` `a, ` `int` `b)` ` ` `{` ` ` ` ` `// Stores the minimum number of` ` ` `// moves required` ` ` `int` `cnt = ` `0` `;` ` ` `// Stores the absolute` ` ` `// difference` ` ` `a = Math.abs(a - b);` ` ` `// FInd the number of moves` ` ` `cnt = (a / ` `5` `) + (a % ` `5` `) / ` `2` `+ (a % ` `5` `) % ` `2` `;` ` ` `// Return cnt` ` ` `return` `cnt;` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `// Input` ` ` `int` `A = ` `3` `, B = ` `9` `;` ` ` `// Function call` ` ` `System.out.println(minimumSteps(A, B));` ` ` `}` `}` ` ` `// This code is contributed by Potta Lokesh` |

## Python3

`# python program for the above approach` `# Function to find minimum number of` `# moves required to convert A into B` `def` `minimumSteps(a, b):` ` ` ` ` `# Stores the minimum number of` ` ` `# moves required` ` ` `cnt ` `=` `0` ` ` `# Stores the absolute` ` ` `# difference` ` ` `a ` `=` `abs` `(a ` `-` `b)` ` ` `# FInd the number of moves` ` ` `cnt ` `=` `(a` `/` `/` `5` `) ` `+` `(a ` `%` `5` `)` `/` `/` `2` `+` `(a ` `%` `5` `) ` `%` `2` ` ` ` ` `# Return cnt` ` ` `return` `cnt` `# Driver Code` `# Input` `A ` `=` `3` `B ` `=` `9` `# Function call` `print` `(minimumSteps(A, B))` `# This code is contributed by amreshkumar3.` |

## C#

`// C# program for the above approach` `using` `System;` `using` `System.Collections.Generic;` `class` `GFG{` `// Function to find minimum number of` `// moves required to convert A into B` `static` `int` `minimumSteps(` `int` `a, ` `int` `b)` `{` ` ` ` ` `// Stores the minimum number of` ` ` `// moves required` ` ` `int` `cnt = 0;` ` ` `// Stores the absolute` ` ` `// difference` ` ` `a = Math.Abs(a - b);` ` ` `// FInd the number of moves` ` ` `cnt = (a / 5) + (a % 5) / 2 + (a % 5) % 2;` ` ` `// Return cnt` ` ` `return` `cnt;` `}` `// Driver Code` `public` `static` `void` `Main()` `{` ` ` ` ` `// Input` ` ` `int` `A = 3, B = 9;` ` ` ` ` `// Function call` ` ` `Console.Write(minimumSteps(A, B));` `}` `}` `// This code is contributed by SURENDRA_GANGWAR` |

## Javascript

`<script>` ` ` `// JavaScript program for the above approach` ` ` `// Function to find minimum number of` ` ` `// moves required to convert A into B` ` ` `function` `minimumSteps(a, b)` ` ` `{` ` ` ` ` `// Stores the minimum number of` ` ` `// moves required` ` ` `let cnt = 0;` ` ` `// Stores the absolute` ` ` `// difference` ` ` `a = Math.abs(a - b);` ` ` `// FInd the number of moves` ` ` `cnt = Math.floor(a / 5) + Math.floor((a % 5) / 2) + (a % 5) % 2;` ` ` `// Return cnt` ` ` `return` `cnt;` ` ` `}` ` ` `// Driver Code` ` ` `// Input` ` ` `let A = 3, B = 9;` ` ` `// Function call` ` ` `document.write(minimumSteps(A, B));` ` ` `// This code is contributed by Potta Lokesh` ` ` `</script>` |

**Output**

2

**Time Complexity:** O(1)**Auxiliary Space:** O(1)