 GFG App
Open App Browser
Continue

# Construct an Array of size N whose sum of cube of all elements is a perfect square

Given an integer N, the tasks is to construct a sorted array arr[] of size N, such that the sum of cube of all elements is a perfect square, i.e. , where X is an integer.

Examples:

Input: N = 5
Output: 1 2 3 4 5
Explanation
Sum of cube of all elements = 1 + 8 + 27 + 64 + 125 = 225
which is a perfect square number.

Input: N = 1
Output:

Solution Approach:

1. The sum of cubes of first N natural number is given by: 2. So, the summation is itself, a perfect square of the integer 3. Therefore , which is nothing but sum of N natural numbers.
4. So, just print the first N natural numbers to construct the array.

Below is the implementation of the above approach:

## C++

 // C++ implementation of the // above approach   #include  using namespace std;   // Function to construct an array // of size N void constructArray(int N) {     for (int i = 1; i <= N; i++) {           // Prints the first N         // natural numbers         cout << i << " ";     } }   // Driver code int main() {     int N = 5;     constructArray(N);     return 0; }

## Java

 // Java implementation of the  // above approach import java.io.*; public class GFG{       // Function to construct an array  // of size N  public static void constructArray(int N)  {      for(int i = 1; i <= N; i++)     {                  // Prints the first N         // natural numbers         System.out.print(i + " ");     }  }    // Driver Code public static void main(String[] args) {     int N = 5;     constructArray(N);  } }   // This code is contributed by divyeshrabadiya07

## Python3

 # Python3 implementation of the  # above approach    # Function to construct an array  # of size N  def constructArray(N):           for i in range(1, N + 1):                   # Prints the first N          # natural numbers          print(i, end = ' ')             # Driver code  if __name__=='__main__':           N = 5           constructArray(N)   # This code is contributed by rutvik_56

## C#

 // C# implementation of the  // above approach  using System; class GFG{       // Function to construct an array  // of size N  public static void constructArray(int N)  {      for(int i = 1; i <= N; i++)     {                    // Prints the first N          // natural numbers          Console.Write(i + " ");     }  }    // Driver Code public static void Main(String[] args) {     int N = 5;     constructArray(N);  } }   // This code is contributed by sapnasingh4991

## Javascript

 

Output:

1 2 3 4 5

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up