Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Construct a Doubly linked linked list from 2D Matrix

  • Difficulty Level : Medium
  • Last Updated : 31 Aug, 2021

Given a 2D matrix, the task is to convert it into a doubly-linked list with four pointers that are next, previous, up, and down, each node of this list should be connected to its next, previous, up, and down nodes.
Examples:

Input: 2D matrix 
1 2 3
4 5 6
7 8 9
Output:

Approach: The main idea is to construct a new node for every element of the matrix and recursively create it’s up, down, previous and next nodes and change the pointer of previous and up pointers respectively.
Below is the implementation of the above approach: 
 

C++




// C++ program to construct a Doubly
// linked linked list from 2D Matrix
 
#include <iostream>
using namespace std;
 
// define dimension of matrix
#define dim 3
 
// struct node of doubly linked
// list with four pointer
// next, prev, up, down
struct Node {
    int data;
    Node* next;
    Node* prev;
    Node* up;
    Node* down;
};
 
// function to create a new node
Node* createNode(int data)
{
    Node* temp = new Node();
    temp->data = data;
    temp->next = NULL;
    temp->prev = NULL;
    temp->up = NULL;
    temp->down = NULL;
    return temp;
}
 
// function to construct the
// doubly linked list
Node* constructDoublyListUtil(
    int mtrx[][dim],
    int i, int j,
    Node* curr)
{
 
    if (i >= dim || j >= dim) {
        return NULL;
    }
 
    // Create Node with value contain
    // in matrix at index (i, j)
    Node* temp = createNode(mtrx[i][j]);
 
    // Assign address of curr into
    // the prev pointer of temp
    temp->prev = curr;
 
    // Assign address of curr into
    // the up pointer of temp
    temp->up = curr;
 
    // Recursive call for next pointer
    temp->next
        = constructDoublyListUtil(
            mtrx, i, j + 1, temp);
 
    // Recursive call for down pointer
    temp->down
        = constructDoublyListUtil(
            mtrx, i + 1, j, temp);
 
    // Return newly constructed node
    // whose all four node connected
    // at it's appropriate position
    return temp;
}
 
// Function to construct the doubly linked list
Node* constructDoublyList(int mtrx[][dim])
{
    // function call for construct
    // the doubly linked list
    return constructDoublyListUtil(
        mtrx, 0, 0, NULL);
}
 
// function for displaying
// doubly linked list data
void display(Node* head)
{
    // pointer to move right
    Node* rPtr;
 
    // pointer to move down
    Node* dPtr = head;
 
    // loop till node->down is not NULL
    while (dPtr) {
 
        rPtr = dPtr;
 
        // loop till node->right is not NULL
        while (rPtr) {
            cout << rPtr->data << " ";
            rPtr = rPtr->next;
        }
 
        cout << "\n";
        dPtr = dPtr->down;
    }
}
 
// driver code
int main()
{
 
    // initialise matrix
    int mtrx[dim][dim] = {
        { 1, 2, 3 },
        { 4, 5, 6 },
        { 7, 8, 9 }
    };
 
    Node* list = constructDoublyList(mtrx);
 
    display(list);
 
    return 0;
}


Java




// Java program to construct a Doubly
// linked linked list from 2D Matrix
import java.util.*;
 
class GFG{
    // define dimension of matrix
    static int dim= 3;
     
    // struct node of doubly linked
    // list with four pointer
    // next, prev, up, down
    static class Node {
        int data;
        Node next;
        Node prev;
        Node up;
        Node down;
    };
     
    // function to create a new node
    static Node createNode(int data)
    {
        Node temp = new Node();
        temp.data = data;
        temp.next = null;
        temp.prev = null;
        temp.up = null;
        temp.down = null;
        return temp;
    }
     
    // function to construct the
    // doubly linked list
    static Node constructDoublyListUtil(int mtrx[][],int i, int j,Node curr)
    {
     
        if (i >= dim || j >= dim) {
            return null;
        }
     
        // Create Node with value contain
        // in matrix at index (i, j)
        Node temp = createNode(mtrx[i][j]);
     
        // Assign address of curr into
        // the prev pointer of temp
        temp.prev = curr;
     
        // Assign address of curr into
        // the up pointer of temp
        temp.up = curr;
     
        // Recursive call for next pointer
        temp.next
            = constructDoublyListUtil(mtrx, i, j + 1, temp);
     
        // Recursive call for down pointer
        temp.down= constructDoublyListUtil(mtrx, i + 1, j, temp);
     
        // Return newly constructed node
        // whose all four node connected
        // at it's appropriate position
        return temp;
    }
     
    // Function to construct the doubly linked list
    static Node constructDoublyList(int mtrx[][])
    {
        // function call for construct
        // the doubly linked list
        return constructDoublyListUtil(mtrx, 0, 0, null);
    }
     
    // function for displaying
    // doubly linked list data
    static void display(Node head)
    {
        // pointer to move right
        Node rPtr;
     
        // pointer to move down
        Node dPtr = head;
     
        // loop till node.down is not null
        while (dPtr != null) {
     
            rPtr = dPtr;
     
            // loop till node.right is not null
            while (rPtr!=null) {
                System.out.print(rPtr.data+" ");
                rPtr = rPtr.next;
            }
     
            System.out.print("\n");
            dPtr = dPtr.down;
        }
    }
     
    // driver code
    public static void main(String args[])
    {
     
        // initialise matrix
        int mtrx[][] = {
            { 1, 2, 3 },
            { 4, 5, 6 },
            { 7, 8, 9 }
        };
     
        Node list = constructDoublyList(mtrx);
     
        display(list);
     
    }
}
 
// This code is contributed by AbhiThakur


Python3




# Python3 program to construct
# a Doubly linked linked list
# from 2D Matrix
  
# define dimension of matrix
dim = 3
  
# struct node of doubly linked
# list with four pointer
# next, prev, up, down
class Node:
     
    def __init__(self, data):
       
        self.data = data
        self.prev = None
        self.up = None
        self.down = None
        self.next = None       
         
# function to create a
# new node
def createNode(data):
 
    temp = Node(data);   
    return temp;
  
# function to construct the
# doubly linked list
def constructDoublyListUtil(mtrx, i,
                            j, curr):
  
    if (i >= dim or
        j >= dim):
        return None;
      
    # Create Node with value
    # contain in matrix at
    # index (i, j)
    temp = createNode(mtrx[i][j]);
  
    # Assign address of curr into
    # the prev pointer of temp
    temp.prev = curr;
  
    # Assign address of curr into
    # the up pointer of temp
    temp.up = curr;
  
    # Recursive call for next
    # pointer
    temp.next= constructDoublyListUtil(mtrx, i,
                                       j + 1,
                                       temp);
  
    # Recursive call for down pointer
    temp.down= constructDoublyListUtil(mtrx,
                                       i + 1,
                                       j, temp);
  
    # Return newly constructed node
    # whose all four node connected
    # at it's appropriate position
    return temp;
 
# Function to construct the
# doubly linked list
def constructDoublyList(mtrx):
 
    # function call for construct
    # the doubly linked list
    return constructDoublyListUtil(mtrx,
                                   0, 0,
                                   None);
   
# function for displaying
# doubly linked list data
def display(head):
 
    # pointer to move right
    rPtr = None
  
    # pointer to move down
    dPtr = head;
  
    # loop till node->down
    # is not NULL
    while (dPtr != None):
  
        rPtr = dPtr;
  
        # loop till node->right
        # is not NULL
        while (rPtr != None):
            print(rPtr.data,
                  end = ' ')
            rPtr = rPtr.next;
         
        print()
        dPtr = dPtr.down;
     
# Driver code
if __name__=="__main__":
     
    # initialise matrix
    mtrx =[[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]]
  
    list = constructDoublyList(mtrx);
    display(list);
 
# This code is contributed by Rutvik_56


C#




// C# program to construct a Doubly
// linked linked list from 2D Matrix
using System;
 
class GFG{
    // define dimension of matrix
    static int dim= 3;
     
    // struct node of doubly linked
    // list with four pointer
    // next, prev, up, down
    public class Node {
        public int data;
        public Node next, prev, up, down;
    };
     
    // function to create a new node
    static Node createNode(int data)
    {
        Node temp = new Node();
        temp.data = data;
        temp.next = null;
        temp.prev = null;
        temp.up = null;
        temp.down = null;
        return temp;
    }
     
    // function to construct the
    // doubly linked list
    static Node constructDoublyListUtil(int[,] mtrx,int i, int j,Node curr)
    {
     
        if (i >= dim || j >= dim) {
            return null;
        }
     
        // Create Node with value contain
        // in matrix at index (i, j)
        Node temp = createNode(mtrx[i,j]);
     
        // Assign address of curr into
        // the prev pointer of temp
        temp.prev = curr;
     
        // Assign address of curr into
        // the up pointer of temp
        temp.up = curr;
     
        // Recursive call for next pointer
        temp.next
            = constructDoublyListUtil(mtrx, i, j + 1, temp);
     
        // Recursive call for down pointer
        temp.down= constructDoublyListUtil(mtrx, i + 1, j, temp);
     
        // Return newly constructed node
        // whose all four node connected
        // at it's appropriate position
        return temp;
    }
     
    // Function to construct the doubly linked list
    static Node constructDoublyList(int[,] mtrx)
    {
        // function call for construct
        // the doubly linked list
        return constructDoublyListUtil(mtrx, 0, 0, null);
    }
     
    // function for displaying
    // doubly linked list data
    static void display(Node head)
    {
        // pointer to move right
        Node rPtr;
     
        // pointer to move down
        Node dPtr = head;
     
        // loop till node.down is not null
        while (dPtr != null) {
     
            rPtr = dPtr;
     
            // loop till node.right is not null
            while (rPtr!=null) {
                Console.Write(rPtr.data+" ");
                rPtr = rPtr.next;
            }
     
            Console.Write("\n");
            dPtr = dPtr.down;
        }
    }
     
    // driver code
    public static void Main()
    {
     
        // initialise matrix
        int[,] mtrx = {
            { 1, 2, 3 },
            { 4, 5, 6 },
            { 7, 8, 9 }
        };
     
        Node list = constructDoublyList(mtrx);
     
        display(list);
     
    }
}
 
// This code is contributed by AbhiThakur


Javascript




<script>
// javascript program to construct a Doubly
// linked linked list from 2D Matrix
   // define dimension of matrix
    var dim = 3;
     
    // struct node of doubly linked
    // list with four pointer
    // next, prev, up, down
    class Node
    {
        constructor()
        {
     
        this.data = 0;
        this.next = null;
        this.prev = null;
        this.up = null;
        this.down = null;
        }
    }
     
    // function to create a new node
   function createNode(data)
    {
         temp = new Node();
        temp.data = data;
        temp.next = null;
        temp.prev = null;
        temp.up = null;
        temp.down = null;
        return temp;
    }
     
    // function to construct the
    // doubly linked list
    function constructDoublyListUtil(mtrx, i , j, curr)
    {
     
        if (i >= dim || j >= dim) {
            return null;
        }
     
        // Create Node with value contain
        // in matrix at index (i, j)
        var temp = createNode(mtrx[i][j]);
     
        // Assign address of curr into
        // the prev pointer of temp
        temp.prev = curr;
     
        // Assign address of curr into
        // the up pointer of temp
        temp.up = curr;
     
        // Recursive call for next pointer
        temp.next
            = constructDoublyListUtil(mtrx, i, j + 1, temp);
     
        // Recursive call for down pointer
        temp.down= constructDoublyListUtil(mtrx, i + 1, j, temp);
     
        // Return newly constructed node
        // whose all four node connected
        // at it's appropriate position
        return temp;
    }
     
    // Function to construct the doubly linked list
    function constructDoublyList(mtrx)
    {
     
        // function call for construct
        // the doubly linked list
        return constructDoublyListUtil(mtrx, 0, 0, null);
    }
     
    // function for displaying
    // doubly linked list data
    function display( head)
    {
     
        // pointer to move right
         rPtr = null;
     
        // pointer to move down
         dPtr = head;
     
        // loop till node.down is not null
        while (dPtr != null) {
     
            rPtr = dPtr;
     
            // loop till node.right is not null
            while (rPtr != null)
            {
                document.write(rPtr.data + " ");
                rPtr = rPtr.next;
            }
     
            document.write("<br/>");
            dPtr = dPtr.down;
        }
    }
     
    // driver code
     
        // initialise matrix
        var mtrx = [
            [ 1, 2, 3 ],
            [ 4, 5, 6 ],
            [ 7, 8, 9 ]
        ];
     
        var list = constructDoublyList(mtrx);
        display(list);
     
// This code is contributed by todaysgaurav
</script>


Output: 

1 2 3 
4 5 6 
7 8 9

 

Method 2 – Iterative Approach

We will make use of dummy nodes to mark the start of up and prev pointers. Also in the above approach, we are creating so many extra nodes, here we will not be creating many extra nodes.

This approach performs better in the case of a large 2D Matrix, as it does not gets overhead recursion calls.

C++




#include<bits/stdc++.h>
using namespace std;
struct Node {
    int data;   // To hold the value of matrix
 
    // 4 pointers for left, right, up, down for markings.
    Node* left;
    Node* right;
    Node* up;
    Node* down;
 
    Node(int x) : data(x) , left(NULL) , right(NULL) , up(NULL) , down(NULL) {}
};
 
void print(Node* head) {
    // Require 2 pointers, downptr and rightptr, for rows and columns.
    Node* downptr = head;
    Node* rightptr;
    while (downptr) {
        rightptr = downptr;
        while (rightptr) {
            cout << (rightptr->data) << " ";
            rightptr = rightptr->right;
        }
        cout << "\n";
        downptr = downptr->down;
    }
}
//Driver Code
int main() {
    int mat[3][3] = {
         { 1, 2, 3 },
        { 4, 5, 6 },
        { 7, 8, 9 }
    };
    int n = 3, m = 3;
 
    Node* head_main = NULL; // head of our final modified doubly linked list from 2d matrix.
    Node* prev, *upper = new Node(-1); // dummy node to mark start of up pointer.
    for (int i = 0; i < n; i++) {
        Node* head_row; //row-wise head of list.
        Node *prev = new Node(-1); // dummy node to mark start of left pointer.
        for (int j = 0; j < m; j++) {
            Node* temp = new Node(mat[i][j]);
 
            if (j == 0) head_row = temp;
            if (i == 0 && j == 0) head_main = temp;
 
            temp->left = prev;
            prev->right = temp;
            if (i == n - 1) temp->down = NULL;
 
            //This is only used for 1st row.
            if (!upper->right) {
                upper->right = new Node(-1);
            }
            upper = upper->right;
 
            temp->up = upper;
            upper->down = temp;
            prev = temp;
 
            if (j == m - 1) prev->right = NULL;
 
        }
        upper = head_row->left;
    }
    print(head_main);
 
    return 0;
}


Output:

1 2 3 
4 5 6 
7 8 9 

Time Complexity: O(n*m) where n represents the number of rows, m represents the number of columns in our matrix. 

Space Complexity: O(1) constant extra space.


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!