Connect a graph by M edges such that the graph does not contain any cycle and Bitwise AND of connected vertices is maximum
Given an array arr[] consisting of values of N vertices of an initially unconnected Graph and an integer M, the task is to connect some vertices of the graph with exactly M edges, forming only one connected component, such that no cycle can be formed and Bitwise AND of the connected vertices is maximum possible.
Examples:
Input: arr[] = {1, 2, 3, 4}, M = 2
Output: 0
Explanation:
Following arrangement of M edges between the given vertices are:
1->2->3 (1 & 2 & 3 = 0).
2->3->4 (2 & 3 & 4 = 0).
3->4->1 (3 & 4 & 1 = 0).
1->2->4 (1 & 2 & 4 = 0).
Therefore, the maximum Bitwise AND value among all the cases is 0.Input: arr[] = {4, 5, 6}, M = 2
Output: 4
Explanation:
Only possible way to add M edges is 4 -> 5 -> 6 (4 & 5 & 6 = 4).
Therefore, the maximum Bitwise AND value possible is 4.
Approach: The idea to solve the given problem is to generate all possible combinations of connecting vertices using M edges and print the maximum Bitwise AND among all possible combinations.
The total number of ways for connecting N vertices is 2N and there should be (M + 1) vertices to make only one connected component. Follow the steps to solve the given problem:
- Initialize two variables, say AND and ans as 0 to store the maximum Bitwise AND, and Bitwise AND of nodes of any possible connected component respectively.
- Iterate over the range [1, 2N] using a variable, say i, and perform the following steps:
- If i has (M + 1) set bits, then find the Bitwise AND of the position of set bits and store it in the variable, say ans.
- If the value of AND exceeds ans, then update the value of AND as ans.
- After completing the above steps, print the value of AND as the resultant maximum Bitwise AND.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum Bitwise // AND of connected components possible // by connecting a graph using M edges int maximumAND( int arr[], int n, int m) { // Stores total number of // ways to connect the graph int tot = 1 << n; // Stores the maximum Bitwise AND int mx = 0; // Iterate over the range [0, 2^n] for ( int bm = 0; bm < tot; bm++) { // Store the Bitwise AND of // the connected vertices int andans = 0; // Store the count of the // connected vertices int count = 0; // Check for all the bits for ( int i = 0; i < n; ++i) { // If i-th bit is set if ((bm >> i) & 1) { // If the first vertex is added if (count == 0) { // Set andans equal to arr[i] andans = arr[i]; } else { // Calculate Bitwise AND // of arr[i] with andans andans = andans & arr[i]; } // Increase the count of // connected vertices count++; } } // If number of connected vertices // is (m + 1), no cycle is formed if (count == (m + 1)) { // Find the maximum Bitwise // AND value possible mx = max(mx, andans); } } // Return the maximum // Bitwise AND possible return mx; } // Driver Code int main() { int arr[] = { 1, 2, 3, 4 }; int N = sizeof (arr) / sizeof (arr[0]); int M = 2; cout << maximumAND(arr, N, M); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the maximum Bitwise // AND of connected components possible // by connecting a graph using M edges static int maximumAND( int arr[], int n, int m) { // Stores total number of // ways to connect the graph int tot = 1 << n; // Stores the maximum Bitwise AND int mx = 0 ; // Iterate over the range [0, 2^n] for ( int bm = 0 ; bm < tot; bm++) { // Store the Bitwise AND of // the connected vertices int andans = 0 ; // Store the count of the // connected vertices int count = 0 ; // Check for all the bits for ( int i = 0 ; i < n; ++i) { // If i-th bit is set if (((bm >> i) & 1 ) != 0 ) { // If the first vertex is added if (count == 0 ) { // Set andans equal to arr[i] andans = arr[i]; } else { // Calculate Bitwise AND // of arr[i] with andans andans = andans & arr[i]; } // Increase the count of // connected vertices count++; } } // If number of connected vertices // is (m + 1), no cycle is formed if (count == (m + 1 )) { // Find the maximum Bitwise // AND value possible mx = Math.max(mx, andans); } } // Return the maximum // Bitwise AND possible return mx; } // Driver Code public static void main(String args[]) { int arr[] = { 1 , 2 , 3 , 4 }; int N = arr.length; int M = 2 ; System.out.println(maximumAND(arr, N, M)); } } // This code is contributed by souravghosh0416 |
Python3
# Python3 program for the above approach # Function to find the maximum Bitwise # AND of connected components possible # by connecting a graph using M edges def maximumAND(arr, n, m): # Stores total number of # ways to connect the graph tot = 1 << n # Stores the maximum Bitwise AND mx = 0 # Iterate over the range [0, 2^n] for bm in range (tot): # Store the Bitwise AND of # the connected vertices andans = 0 # Store the count of the # connected vertices count = 0 # Check for all the bits for i in range (n): # If i-th bit is set if ((bm >> i) & 1 ): # If the first vertex is added if (count = = 0 ): # Set andans equal to arr[i] andans = arr[i] else : # Calculate Bitwise AND # of arr[i] with andans andans = andans & arr[i] # Increase the count of # connected vertices count + = 1 # If number of connected vertices # is (m + 1), no cycle is formed if (count = = (m + 1 )): # Find the maximum Bitwise # AND value possible mx = max (mx, andans) # Return the maximum # Bitwise AND possible return mx # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 4 ] N = len (arr) M = 2 print (maximumAND(arr, N, M)) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; class GFG{ // Function to find the maximum Bitwise // AND of connected components possible // by connecting a graph using M edges static int maximumAND( int [] arr, int n, int m) { // Stores total number of // ways to connect the graph int tot = 1 << n; // Stores the maximum Bitwise AND int mx = 0; // Iterate over the range [0, 2^n] for ( int bm = 0; bm < tot; bm++) { // Store the Bitwise AND of // the connected vertices int andans = 0; // Store the count of the // connected vertices int count = 0; // Check for all the bits for ( int i = 0; i < n; ++i) { // If i-th bit is set if (((bm >> i) & 1) != 0 ) { // If the first vertex is added if (count == 0) { // Set andans equal to arr[i] andans = arr[i]; } else { // Calculate Bitwise AND // of arr[i] with andans andans = andans & arr[i]; } // Increase the count of // connected vertices count++; } } // If number of connected vertices // is (m + 1), no cycle is formed if (count == (m + 1)) { // Find the maximum Bitwise // AND value possible mx = Math.Max(mx, andans); } } // Return the maximum // Bitwise AND possible return mx; } // Driver Code static public void Main () { int [] arr = { 1, 2, 3, 4 }; int N = arr.Length; int M = 2; Console.WriteLine(maximumAND(arr, N, M)); } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // JavaScript program for the above approach // Function to find the maximum Bitwise // AND of connected components possible // by connecting a graph using M edges function maximumAND(arr, n, m) { // Stores total number of // ways to connect the graph let tot = 1 << n; // Stores the maximum Bitwise AND let mx = 0; // Iterate over the range [0, 2^n] for (let bm = 0; bm < tot; bm++) { // Store the Bitwise AND of // the connected vertices let andans = 0; // Store the count of the // connected vertices let count = 0; // Check for all the bits for (let i = 0; i < n; ++i) { // If i-th bit is set if (((bm >> i) & 1) != 0) { // If the first vertex is added if (count == 0) { // Set andans equal to arr[i] andans = arr[i]; } else { // Calculate Bitwise AND // of arr[i] with andans andans = andans & arr[i]; } // Increase the count of // connected vertices count++; } } // If number of connected vertices // is (m + 1), no cycle is formed if (count == (m + 1)) { // Find the maximum Bitwise // AND value possible mx = Math.max(mx, andans); } } // Return the maximum // Bitwise AND possible return mx; } // Driver Code let arr = [ 1, 2, 3, 4 ]; let N = arr.length; let M = 2; document.write(maximumAND(arr, N, M)); </script> |
0
Time Complexity: O((2N)*N)
Auxiliary Space: O(N)
Please Login to comment...